Design of a new long-time continuous photoplethysmography signal acquisition system to obtain accurate measurement of heart rate

Rajeev Kumar Pandey, Jerry Lin, Paul C.-P. Chao*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This study presents a time-interleave and low DC drift longtime continuous photoplethysmography (PPG) signal acquisition system to obtain accurate measurement of heart rate (HR) in real-time. Time-interleave functionality is used herein to minimize the mispositioning issue. Intensity tuning and transimpedance amplifier gain tuning is used herein to acquire a high- quality PPG signal. The front-end analog readout circuit is designed and implemented by using T18 process. The experimental result shows that the design readout system has the DC settling time of 1 second after the motion artifact. The measured current sensing range is 30nA-10uA. The estimated signal to noise ratio is 68dB@1Hz. The backend pre-signal processing incorporates a new convolution-based moving average filter, signal quality index estimator, and a peak-through detector. The non-invasive PPG sensor is applied to the wrist artery of the 40 healthy subjects for sensing the pulsation of the blood vessel. During the measurement, the subject did not drink (alcohol), eat, smoke or workout. The Measurement results shows that the heart rate accuracy and standard error are 95%, and 0.37±1.96bpm, respectively.

Original languageEnglish
Title of host publicationASME 2020 29th Conference on Information Storage and Processing Systems, ISPS 2020
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791883600
DOIs
StatePublished - Jun 2020
EventASME 2020 29th Conference on Information Storage and Processing Systems, ISPS 2020 - Virtual, Online
Duration: 24 Jun 202025 Jun 2020

Publication series

NameASME 2020 29th Conference on Information Storage and Processing Systems, ISPS 2020

Conference

ConferenceASME 2020 29th Conference on Information Storage and Processing Systems, ISPS 2020
CityVirtual, Online
Period24/06/2025/06/20

Keywords

  • Heart rate (HR)
  • Heart rate variability (HRV)
  • Photoplethysmography (PPG) sensor

Fingerprint

Dive into the research topics of 'Design of a new long-time continuous photoplethysmography signal acquisition system to obtain accurate measurement of heart rate'. Together they form a unique fingerprint.

Cite this