Depression Scale Prediction with Cross-Sample Entropy and Deep Learning

Guan Yen Chen, Chih Mao Huang, Ho Ling Liu, Shwu Hua Lee, Tatia Mei Chun Lee, Chemin Lin, Shun Chi Wu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

A two-stage deep learning-based scheme is presented to predict the Hamilton Depression Scale (HAM-D) in this study. First, the cross-sample entropy (CSE) that allows assessing the degree of similarity of two data series are evaluated for the 90 brain regions of interest partitioned according to Automated Anatomical Labeling. The obtained CSE maps are then converted to 3D CSE volumes to serve as the inputs to the deep learning network models for the HAM-D scale level classification and prediction. The efficacy of the proposed scheme was illustrated by the resting-state functional magnetic resonance imaging data from 38 patients. From the results, the root mean square errors for the HAM-D scale prediction obtained during training, validation, and testing were 2.73, 2.66, and 2.18, which were less than those of a scheme having only a regression stage.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages120-123
Number of pages4
ISBN (Electronic)9781728119908
DOIs
StatePublished - 20 Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: 20 Jul 202024 Jul 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period20/07/2024/07/20

Fingerprint

Dive into the research topics of 'Depression Scale Prediction with Cross-Sample Entropy and Deep Learning'. Together they form a unique fingerprint.

Cite this