Den: Disentangling and exchanging network for depth completion

You Feng Wu*, Vu Hoang Tran, Ting Wei Chang, Wei-Chen Chiu, Ching-Chun Huang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations


In this paper, we tackle the depth completion problem. Conventional depth sensors usually produce incomplete depth maps due to the property of surface reflection, especially for the window areas, metal surfaces, and object boundaries. However, we observe that the corresponding RGB images are still dense and preserve all of the useful structural information. The observation brings us to the question of whether we can borrow this structural information from RGB images to inpaint the corresponding incomplete depth maps. In this paper, we answer that question by proposing a Disentangling and Exchanging Network (DEN) for depth completion. The network is designed based on the assumption that after suitable feature disentanglement, RGB images and depth maps share a common domain for representing structural information. So we firstly disentangle both RGB and depth images into domain-invariant content parts, which contain structural information, and domain-specific style parts. Then, by exchanging the complete structural information extracted from the RGB image with incomplete information extracted from the depth map, we can generate the complete version of the depth map. Furthermore, to address the mixed-depth problem, a newly proposed depth representation is applied. By modeling depth estimation as a classification problem coupled with coefficient estimation, blurry edges are enhanced in the depth map. At last, we have implemented ablation experiments to verify the effectiveness of the proposed DEN model. The results also demonstrate the superiority of DEN over some state-of-the-art approaches.

Original languageEnglish
Title of host publicationProceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages8
ISBN (Electronic)9781728188089
StatePublished - 2020
Event25th International Conference on Pattern Recognition, ICPR 2020 - Virtual, Milan, Italy
Duration: 10 Jan 202115 Jan 2021

Publication series

NameProceedings - International Conference on Pattern Recognition
ISSN (Print)1051-4651


Conference25th International Conference on Pattern Recognition, ICPR 2020
CityVirtual, Milan


Dive into the research topics of 'Den: Disentangling and exchanging network for depth completion'. Together they form a unique fingerprint.

Cite this