Deformation analysis of tunnel excavation in gravelly formation using the anisotropic degradation model

Meng-Chia Weng*, Fu Shu Jeng, Bin Lin Chu, Yeun Wen Jou, Chui Yi Liao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


This study adopts a shear-induced anisotropic degradation model to analyze the deformation of excavation in gravelly formations. The adopted model is a variable moduli model with the following characteristics: the stress-strain relationship originates from degradation of the bulk modulus and shear modulus subjected to different loadings. Under hydrostatic loading, gravelly soil may behave as an isotropic material. However, when gravelly soil is subjected to shear loading, the material becomes anisotropic and degrades before ultimate strength is attained. Therefore, this study introduces an anisotropic factor to reflect the tendency to shear-induced volumetric deformation. To analyze the deformation of the Pakuashan tunnel, which passes through a gravelly formation in Taiwan, the model was first validated by comparing the drained triaxial test results of gravelly materials sampled from the tunnel. The proposed model is implemented with a finite element code to predict the tunnel deformation under construction. A comparison between the monitoring data and numerical analysis shows that the proposed model can reasonably simulate the behavior of a gravelly formation under excavation. Numerical analysis shows that the main deformation of the tunnel is the result of significant degradation of the moduli around the whole section, especially at the crown and invert of the tunnel.

Original languageEnglish
Pages (from-to)959-967
Number of pages9
JournalJournal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an
Issue number8
StatePublished - 17 Nov 2015


  • gravelly soil


Dive into the research topics of 'Deformation analysis of tunnel excavation in gravelly formation using the anisotropic degradation model'. Together they form a unique fingerprint.

Cite this