DeepPrefetcher: A Deep Learning Framework for Data Prefetching in Flash Storage Devices

Gaddisa Olani Ganfure, Chun Feng Wu, Yuan Hao Chang*, Wei Kuan Shih

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

In today's information-driven world, data access latency accounts for the expensive part of processing user requests. One potential solution to access latency is prefetching, a technique to speculate and move future requests closer to the processing unit. However, the block access requests received by the storage device show poor spatial locality because most file-related locality is absorbed in the higher layers of the memory hierarchy, including the CPU cache and main memory. Besides, the utilization of multithreading results in an interleaved access request making prefetching at the storage level more picky using existing prefetching techniques. Toward this, we propose and assess DeepPrefetcher, a novel deep neural network inspired context-aware prefetching method that adapts to arbitrary memory access patterns. DeepPrefetcher learns the block access pattern contexts using distributed representation and leverage long short-term memory learning model for context-aware data prefetching. Instead of using the logical block address (LBA) value directly, we model the difference between successive access requests, which contains more patterns than LBA value for modeling. By targeting access pattern sequence in this manner, the DeepPrefetcher can learn the vital context from a long input LBA sequence and learn to predict both the previously seen and unseen access patterns. The experimental result reveals that DeepPrefetcher can increase an average prefetch accuracy, coverage, and speedup by 21.5%, 19.5%, and 17.2%, respectively, contrasted with the baseline prefetching strategies. Overall, the proposed prefetching approach surpasses other schemes in all benchmarks, and the outcomes are promising.

Original languageEnglish
Article number9211554
Pages (from-to)3311-3322
Number of pages12
JournalIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Volume39
Issue number11
DOIs
StatePublished - Nov 2020

Keywords

  • Data prefetching
  • deep learning
  • flash storage devices
  • logical block address (LBA)

Fingerprint

Dive into the research topics of 'DeepPrefetcher: A Deep Learning Framework for Data Prefetching in Flash Storage Devices'. Together they form a unique fingerprint.

Cite this