Deep Learning Technology Applied to Medical Image Tissue Classification

Min Jen Tsai*, Yu Han Tao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Medical image classification is a novel technology that presents a new challenge. It is essential that pathological images are automatically and correctly classified to enable doctors to provide precise treatment. Convolutional neural networks have demonstrated their effectiveness in classifying images in deep learning, which may have dozens or hundreds of layers, to illustrate the relationship between them in terms of their different neural network features. Convolutional layers consisting of small kernels take weights as input and guide them through an activation function as output. The main advantage of using convolutional neural networks (CNNs) instead of traditional neural networks is that they reduce the model parameters for greater accuracy. However, many studies have simply been focused on finding the best CNN model and classification results from a single medical image classification. Therefore, we applied a common deep learning network model in an attempt to identify the best model framework by training and validating different model parameters to classify medical images. After conducting experiments on six publicly available databases of pathological images, including colorectal cancer tissue, chest X-rays, common skin lesions, diabetic retinopathy, pediatric chest X-ray, and breast ultrasound image datasets, we were able to confirm that the recognition accuracy of the Inception V3 method was significantly better than that of other existing deep learning models.

Original languageEnglish
Article number2430
JournalDiagnostics
Volume12
Issue number10
DOIs
StatePublished - Oct 2022

Keywords

  • colorectal cancer classification
  • convolutional neural network
  • deep learning

Fingerprint

Dive into the research topics of 'Deep Learning Technology Applied to Medical Image Tissue Classification'. Together they form a unique fingerprint.

Cite this