Deep Learning-Based Range-Doppler Map Reconstruction in Automotive Radar Systems

Hao Wei Hsu, Yu Chien Lin, Ming-Chun Lee, Chia Hung Lin, Ta-Sung Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

In this paper, we consider the automotive orthogonal frequency division modulation-radar in millimeter wave band. To avoid interference between different radar systems, resources need to be split and then used by different radar systems. This thus degrades the radar performance as compared to the radar system having full resources (FRs). To mitigate this issue, we develop a deep learning-based range-Doppler (R-D) map reconstruction approach along with a time-frequency resource allocation scheme. In the reconstruction approach, we propose a deep learning-based convolutional neural network to reconstruct the R-D map such that the reconstructed R-D map can be close to the R-D map under FRs. In the resource allocation scheme, we propose a block-wise interleaved method that can facilitate the proposed reconstruction approach. Simulation results show that our proposed approach can effectively mitigate the performance degradation of radar systems when resources are shared among users.

Original languageEnglish
Title of host publication2021 IEEE 93rd Vehicular Technology Conference, VTC 2021-Spring - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages7
ISBN (Electronic)9781728189642
DOIs
StatePublished - 25 Apr 2021
Event93rd IEEE Vehicular Technology Conference, VTC 2021-Spring - Virtual, Online
Duration: 25 Apr 202128 Apr 2021

Publication series

NameIEEE Vehicular Technology Conference
Volume2021-April
ISSN (Print)1550-2252

Conference

Conference93rd IEEE Vehicular Technology Conference, VTC 2021-Spring
CityVirtual, Online
Period25/04/2128/04/21

Fingerprint

Dive into the research topics of 'Deep Learning-Based Range-Doppler Map Reconstruction in Automotive Radar Systems'. Together they form a unique fingerprint.

Cite this