Deep-learning-based human motion tracking for rehabilitation applications using 3D image features

Kai Yu Chen, Wei Zhong Zheng, Yu Yi Lin, Shih Tsang Tang, Li Wei Chou, Ying Hui Lai

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Motion rehabilitation is increasingly required owing to an aging population and suffering of stroke, which means human motion analysis must be valued. Based on the concept mentioned above, a deep-learning-based system is proposed to track human motion based on three-dimensional (3D) images in this work; meanwhile, the features of traditional red green blue (RGB) images, known as two-dimensional (2D) images, were used as a comparison. The results indicate that 3D images have an advantage over 2D images due to the information of spatial relationships, which implies that the proposed system can be a potential technology for human motion analysis applications.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages803-807
Number of pages5
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: 20 Jul 202024 Jul 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period20/07/2024/07/20

Fingerprint

Dive into the research topics of 'Deep-learning-based human motion tracking for rehabilitation applications using 3D image features'. Together they form a unique fingerprint.

Cite this