Deep brain stimulation modified autism-like deficits via the serotonin system in a valproic acid-induced rat model

Han Fang Wu, Yi Ju Chen, Ming Chia Chu, Ya Ting Hsu, Ting Yi Lu, I. Tuan Chen, Po See Chen, Hui Ching Lin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Deep brain stimulation (DBS) is known to be a promising treatment for resistant depression, which acts via the serotonin (5-hydroxytryptamine, 5-HT) system in the infralimbic prefrontal cortex (ILPFC). Previous study revealed that dysfunction of brain 5-HT homeostasis is related to a valproate (VPA)-induced rat autism spectrum disorder (ASD) model. Whether ILPFC DBS rescues deficits in VPA-induced offspring through the 5-HT system is not known. Using VPA-induced offspring, we therefore explored the effect of DBS in autistic phenotypes and further investigated the underlying mechanism. Using combined behavioral and molecular approaches, we observed that applying DBS and 5-HT1A receptor agonist treatment with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) reversed sociability deficits, anxiety and hyperactivity in the VPA-exposed offspring. We then administered the selective 5-HT1A receptor antagonist N-[2-[4-(2-Methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate (WAY 100635), following which the effect of DBS in terms of improving autistic behaviors was blocked in the VPA-exposed offspring. Furthermore, we found that both 8-OH-DPAT and DBS treatment rescued autistic behaviors by decreasing the expressions of NR2B subunit of N-methyl-D-aspartate receptors (NMDARs) and the β3 subunit of γ-aminobutyric acid type A receptors (GABAAR) in the PFC region. These results provided the first evidence of characteristic behavioral changes in VPA-induced offspring caused by DBS via the 5-HT system in the ILPFC.

Original languageEnglish
Article number2840
JournalInternational Journal Of Molecular Sciences
Volume19
Issue number9
DOIs
StatePublished - 19 Sep 2018

Keywords

  • Autism spectrum disorder
  • Deep brain stimulation
  • Serotonin system
  • Valproic acid

Fingerprint

Dive into the research topics of 'Deep brain stimulation modified autism-like deficits via the serotonin system in a valproic acid-induced rat model'. Together they form a unique fingerprint.

Cite this