Decentralized SGD with Over-the-Air Computation

E. Ozfatura, Stefano Rini, D. Gunduz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

30 Scopus citations

Abstract

We consider multiple devices with local datasets collaboratively learning a global model through device-to-device (D2D) communications. The conventional decentralized stochastic gradient descent (DSGD) solution for this problem assumes error-free orthogonal links among the devices. This is based on the assumption of an underlying communication protocol that takes care of the noise, fading, and interference in the wireless medium. In this work, we show the suboptimality of this approach by designing the communication and learning protocols jointly. We first consider a point-to-point (P2P) communication scheme by scheduling D2D transmissions in an orthogonal fashion to minimize interference. Then, we propose a novel over-the-air consensus scheme by exploiting the signal superposition property of wireless transmission, rather than avoiding interference. In the proposed OAC-MAC scheme, multiple nodes align their transmissions toward a single receiver node. For both schemes, we cast the scheduling problem as a graph coloring problem. We then numerically compare the two approaches for the distributed MNIST image classification task under various network conditions. We show that the OAC-MAC scheme attains better convergence speed and final accuracy thanks to the improved robustness against channel fading and noise. We also introduce a noise-aware version of the OAC-MAC scheme with further improvements in the convergence speed and accuracy.

Original languageEnglish
Title of host publication2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728182988
DOIs
StatePublished - Dec 2020
Event2020 IEEE Global Communications Conference, GLOBECOM 2020 - Virtual, Taipei, Taiwan
Duration: 7 Dec 202011 Dec 2020

Publication series

Name2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings

Conference

Conference2020 IEEE Global Communications Conference, GLOBECOM 2020
Country/TerritoryTaiwan
CityVirtual, Taipei
Period7/12/2011/12/20

Fingerprint

Dive into the research topics of 'Decentralized SGD with Over-the-Air Computation'. Together they form a unique fingerprint.

Cite this