TY - JOUR
T1 - Cysteamine-modified diamond nanoparticles applied in cellular imaging and Hg 2+ ions detection
AU - Shellaiah, Muthaiah
AU - Simon, Turibius
AU - Venkatesan, Parthiban
AU - Sun, Kien-Wen
AU - Ko, Fu-Hsiang
AU - Wu, Shu-Pao
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2019/1/28
Y1 - 2019/1/28
N2 - Luminescent cysteamine-modified nanodiamond particles (ND-Cys) have been reported in surface-mediated energy transfer, cell imaging, and metal-ion recognition studies. In normalized photoluminescence (PL) spectral studies, the emission maxima of ND-Cys (at 50 µg/mL in water) was fixed at 438 nm at 350 nm excitation, producing a blue emission with a quantum yield (Φ) of 0.13. In the dispersion range of 0–800 µg/mL, ND-Cys exhibited agglomeration-induced energy transfer via red shifting of the PL peak from 438 nm to 451 nm. Analogous to PL studies, Raman interrogations also established the agglomeration and fixed the saturation limit to 500 µg/mL in water. The low toxicity and biocompatibility of ND-Cys were demonstrated using methyl thiazolyl tetrazolium assay and time-dependent HeLa cell imaging. Subsequently, the Hg 2+ selectivity by ND-Cys was revealed by an intense fluorescence peak shift from 440 nm to 463 nm. Fluorescence studies indicated that the detection limit of Hg 2+ ions approximated 153 nM. Fourier-transform infrared and X-ray photoelectron spectroscopy (XPS) analyses supported the binding between free thiol (–SH) and amide (–C[dbnd]O and –NH) groups of ND-Cys to Hg 2+ . The Hg 2+ -induced agglomeration and surface graphitization were successfully confirmed by X-ray powder diffraction, XPS, Raman, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, and zeta potential analyses. Effective detection of Hg 2+ ions by ND-Cys was validated through HeLa cell imaging at shortened time intervals.
AB - Luminescent cysteamine-modified nanodiamond particles (ND-Cys) have been reported in surface-mediated energy transfer, cell imaging, and metal-ion recognition studies. In normalized photoluminescence (PL) spectral studies, the emission maxima of ND-Cys (at 50 µg/mL in water) was fixed at 438 nm at 350 nm excitation, producing a blue emission with a quantum yield (Φ) of 0.13. In the dispersion range of 0–800 µg/mL, ND-Cys exhibited agglomeration-induced energy transfer via red shifting of the PL peak from 438 nm to 451 nm. Analogous to PL studies, Raman interrogations also established the agglomeration and fixed the saturation limit to 500 µg/mL in water. The low toxicity and biocompatibility of ND-Cys were demonstrated using methyl thiazolyl tetrazolium assay and time-dependent HeLa cell imaging. Subsequently, the Hg 2+ selectivity by ND-Cys was revealed by an intense fluorescence peak shift from 440 nm to 463 nm. Fluorescence studies indicated that the detection limit of Hg 2+ ions approximated 153 nM. Fourier-transform infrared and X-ray photoelectron spectroscopy (XPS) analyses supported the binding between free thiol (–SH) and amide (–C[dbnd]O and –NH) groups of ND-Cys to Hg 2+ . The Hg 2+ -induced agglomeration and surface graphitization were successfully confirmed by X-ray powder diffraction, XPS, Raman, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, and zeta potential analyses. Effective detection of Hg 2+ ions by ND-Cys was validated through HeLa cell imaging at shortened time intervals.
KW - Diamond nanoparticles
KW - Energy transfer
KW - HeLa cell imaging
KW - Hg induced agglomeration
KW - Photoluminescence
KW - Surface graphitization
UR - http://www.scopus.com/inward/record.url?scp=85054007026&partnerID=8YFLogxK
U2 - 10.1016/j.apsusc.2018.09.175
DO - 10.1016/j.apsusc.2018.09.175
M3 - Article
AN - SCOPUS:85054007026
SN - 0169-4332
VL - 465
SP - 340
EP - 350
JO - Applied Surface Science
JF - Applied Surface Science
M1 - 8579236
ER -