Abstract
Background: Microglial inflammation may significantly contribute to the pathology of Alzheimer's disease. To examine the potential of Cudrania cochinchinensis to ameliorate amyloid β protein (Aβ)-induced microglia activation, BV-2 microglial cell line, and the ramified microglia in the primary glial mixed cultured were employed. Results: Lipopolysaccharide (LPS), Interferon-γ (IFN-γ), fibrillary Aβ (fAβ), or oligomeric Aβ (oAβ) were used to activate microglia. LPS and IFN-γ, but not Aβs, activated BV-2 cells to produce nitric oxide through an increase in inducible nitric oxide synthase (iNOS) expression without significant effects on cell viability of microglia. fAβ, but not oAβ, enhanced the IFN-γ-stimulated nitric oxide production and iNOS expression.The ethanol/water extracts of Cudrania cochinchinensis (CC-EW) and the purified isolated components (i.e. CCA to CCF) effectively reduced the nitric oxide production and iNOS expression stimulated by IFN-γ combined with fAβ. On the other hand, oAβ effectively activated the ramified microglia in mixed glial culture by observing the morphological alteration of the microglia from ramified to amoeboid. CC-EW and CCB effectively prohibit the Aβ-mediated morphological change of microglia. Furthermore, CC-EW and CCB effectively decreased Aβ deposition and remained Aβ in the conditioned medium suggesting the effect of CC-EW and CCB on promoting Aβ clearance. Results are expressed as mean ± S.D. and were analyzed by ANOVA with post-hoc multiple comparisons with a Bonferroni test. Conclusions: The components of Cudrania cochinchinensis including CC-EW and CCB are potential for novel therapeutic intervention for Alzheimer's disease.
| Original language | English |
|---|---|
| Article number | 55 |
| Journal | Journal of Biomedical Science |
| Volume | 20 |
| Issue number | 1 |
| DOIs | |
| State | Published - 2013 |
Keywords
- Alzheimer's disease
- Amyloid β
- Cudrania cochinchinensis
- Microglia
- Mixed glial culture
- Neuroinflammation