Convolutional Beamspace for Array Signal Processing

P. P. Vaidyanathan, Po Chih Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

A new type of beamspace for array processing is introduced called convolutional beamspace. It enjoys the advantages of traditional beamspace such as lower computational complexity, increased parallelism of subband processing, and improved resolution threshold for DOA estimation. But unlike traditional beamspace methods, it allows root-MUSIC and ESPRIT to be performed directly for ULAs without any overhead of preparation, as the Vandermonde structure and the shift-invariance are preserved under the transformation. The method produces more accurate DOA estimates than traditional beamspace methods, and for correlated sources it produces better estimates than element-space methods.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4707-4711
Number of pages5
ISBN (Electronic)9781509066315
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
Duration: 4 May 20208 May 2020

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2020-May
ISSN (Print)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Country/TerritorySpain
CityBarcelona
Period4/05/208/05/20

Keywords

  • Beamspace
  • Convolution
  • Dimension Reduction
  • Large Arrays
  • MUSIC.

Fingerprint

Dive into the research topics of 'Convolutional Beamspace for Array Signal Processing'. Together they form a unique fingerprint.

Cite this