CONTRASTIVE HEARTBEATS: CONTRASTIVE LEARNING FOR SELF-SUPERVISED ECG REPRESENTATION AND PHENOTYPING

Crystal T. Wei*, Ming En Hsieh, Chien Liang Liu, Vincent S. Tseng

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The non-invasive and easily accessible characteristics of electrocardiogram (ECG) attract many studies targeting AI-enabled cardiovascular-related disease screening tools based on ECG. However, the high cost of manual labels makes high-performance deep learning models challenging to obtain. Hence, we propose a new self-supervised representation learning framework, contrastive heartbeats (CT-HB), which learns general and robust electrocardiogram representations for efficient training on various downstream tasks. We employ a novel heartbeat sampling method to define positive and negative pairs of heartbeats for contrastive learning by utilizing the periodic and meaningful patterns of electrocardiogram signals. Using the CT-HB framework, the self-supervised learning model learns personalized heartbeat representations representing the specific cardiology context of a patient. Evaluations on public benchmark datasets and a private large-scale real-world dataset with multiple tasks demonstrate that the learned semantic representations result in better performance on downstream tasks and retain high performance while supervised learning suffers performance degradation with fewer supervised labels in downstream tasks.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1126-1130
Number of pages5
ISBN (Electronic)9781665405409
DOIs
StatePublished - 2022
Event47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore
Duration: 23 May 202227 May 2022

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2022-May
ISSN (Print)1520-6149

Conference

Conference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
Country/TerritorySingapore
CityVirtual, Online
Period23/05/2227/05/22

Keywords

  • Contrastive learning
  • Electrocardiogram
  • Representation learning
  • Self-supervised learning

Fingerprint

Dive into the research topics of 'CONTRASTIVE HEARTBEATS: CONTRASTIVE LEARNING FOR SELF-SUPERVISED ECG REPRESENTATION AND PHENOTYPING'. Together they form a unique fingerprint.

Cite this