Abstract
Mature HIV-1 protease (PR) functions as a dimer. Changes in HIV-1 PR activation can block virus assembly via premature or enhanced Gag cleavage. HIV-1 PR precursor contains N terminal-linked p6*, a possible modulating factor in PR activation. We found that p6* replacement with a leucine zipper (LZ) dimerization motif (creating a DWzPR construct) or an LZ insertion at the PR C-terminus significantly reduced virus yields due to enhanced Gag cleavage, suggesting that an LZ insertion promotes PR activation by facilitating PR dimer formation. However, introducing T26S (a PR activity-attenuated mutation) into DWzPR strongly impaired Gag cleavage, except when the native C-terminal p6* tetrapeptide remained at the LZ/PR junction. LZ insertion at the PR C-terminus still strongly enhanced PR T26S Gag cleavage. Our data suggest that in addition to p6* mutations, a single amino acid substitution within PR can impair PR activation, likely due to conformational changes triggered by the PR precursor.
Original language | English |
---|---|
Article number | 198258 |
Journal | Virus Research |
Volume | 295 |
DOIs | |
State | Published - 2 Apr 2021 |
Keywords
- Gag cleavage
- Gag-Pol
- HIV-1
- Leucine zipper
- p6pol
- Protease activation
- Virus maturation