Abstract
Low-dimensional semiconductors such as one-dimensional carbon nanotubes could be used to shrink the gate length of metal–oxide–semiconductor field-effect transistors (MOSFETs) below the limits of silicon-based transistors. However, the development of industry-compatible doping strategies and polarity-control methods for such systems is challenging. Here we report top-gate complementary carbon nanotube MOSFETs in which localized conformal solid-state extension doping is used to set the device polarity and achieve performance matching. The channel of the transistors remains undoped, providing complementary metal–oxide–semiconductor-compatible n- and p-MOSFET threshold voltages of +0.29 V and −0.25 V, respectively. The foundry-compatible fabrication process implements localized charge transfer in the extensions from either defect levels in silicon nitride (SiNx) for n-type devices or an electrostatic dipole at the SiNx/aluminium oxide (Al2O3) interface for p-type devices. We observe SiNx donor defect densities approaching 5 × 1019 cm−3, which could sustain carbon nanotube carrier densities of 0.4 nm−1 in the extensions of scaled nanotube devices. Our technique is potentially applicable to other advanced field-effect transistor channel materials, including two-dimensional semiconductors.
Original language | English |
---|---|
Pages (from-to) | 999-1008 |
Number of pages | 10 |
Journal | Nature Electronics |
Volume | 6 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2023 |