Comparison of genetic profiling between primary tumor and circulating tumor cells captured by microfluidics in epithelial ovarian cancer: Tumor heterogeneity or Allele dropout?

Ting Yu Chang, Sheng Wen Chen, Wen Hsiang Lin, Chung Er Huang, Mark I. Evans, I. Fang Chung, Janne Wha Wu*, Gwo Chin Ma, Ming Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Epithelial ovarian cancer (EOC) is a leading cause of cancer mortality among women but unfortunately is usually not diagnosed until advanced stage. Early detection of EOC is of paramount importance to improve outcomes. Liquid biopsy of circulating tumor cells (CTCs) is emerging as one of the promising biomarkers for early detection of solid tumors. However, discrepancies in terms of oncogenomics (i.e., different genetic defects detected) between the germline, primary tumor, and liquid biopsy are a serious concern and may adversely affect downstream cancer management. Here, we illustrate the potential and pitfalls of CTCs by presenting two patients of Stage I EOC. We successfully isolated and recovered CTCs by a silicon-based nanostructured microfluidics system, the automated Cell Reveal™. We examined the genomics of CTCs as well as the primary tumor and germline control (peripheral blood mononuclear cells) by whole exome sequencing. Different signatures were then investigated by comparisons of identified mutation loci distinguishing those that may only arise in the primary tumor or CTCs. A novel model is proposed to test if the highly variable allele frequencies, between primary tumor and CTCs results, are due to allele dropout in plural CTCs or tumor heterogeneity. This proof-of-principle study provides a strategy to elucidate the possible cause of genomic discrepancy between the germline, primary tumor, and CTCs, which is helpful for further large-scale use of such technology to be integrated into clinical management protocols.

Original languageEnglish
Article number1102
JournalDiagnostics
Volume11
Issue number6
DOIs
StatePublished - Jun 2021

Keywords

  • Allele dropout
  • CTC
  • EOC
  • Liquid biopsy
  • Tumor heterogeneity
  • Whole exome sequencing

Fingerprint

Dive into the research topics of 'Comparison of genetic profiling between primary tumor and circulating tumor cells captured by microfluidics in epithelial ovarian cancer: Tumor heterogeneity or Allele dropout?'. Together they form a unique fingerprint.

Cite this