Common altered epigenomic domains in cancer cells: Characterization and subtle variations

Yi Chien Tsai, Chun Hui Chiao, Ian Yi Feng Chang, Dow Tien Chen, Tze Tze Liu, Kate Hua, Chuan Hsiung Chang, Ming Ta Hsu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We have previously identified large megabase-sized hypomethylated zones in the genome of the breast cancer cell line MCF-7 using the TspRI-ExoIII technique. In this report, we used a more convenient high throughput method for mapping the hypomethylated zones in a number of human tumor genomes simultaneously. The method was validated by the bisulfite sequencing of 39 randomly chosen sites in a demethylated domain and by bisulfite genome-wide sequencing of the MCF-7 genome. This showed that the genomes of the various tumor cell lines, as well as some primary tumors, exhibit common hypomethylated domains. Interestingly, these hypomethylated domains are correlated with low CpG density distribution genome-wide, together with the histone H3K27Me3 landscape. Furthermore, they are inversely correlated with the H3K9Ac landscape and gene expression as measured in MCF-7 cells. Treatment with drugs resulted in en-bloc changes to the methylation domains. A close examination of the methylation domains found differences between non-invasive and invasive tumors with respect to tumorigenesis related genes. Taken together these results suggest that the human genome is organized in epigenomic domains that contain various different types of genes and imply that there are cis- and trans-regulators that control these domain-wide epigenetic changes and hence gene expression in the human genome. The hypomethylated domains are located in gene deserts that contain mainly tissue-specific genes and therefore we hypothesize that tumor cells keep these regions demethylated and silenced in order to save energy and resources and allow higher levels of cell proliferation and better survival (a thrifty tumor genome hypothesis).

Original languageEnglish
Pages (from-to)1996-2013
Number of pages18
JournalCancers
Volume3
Issue number2
DOIs
StatePublished - Jun 2011

Keywords

  • Cancer
  • DNA methylation
  • Epigenetic
  • Histone modification

Fingerprint

Dive into the research topics of 'Common altered epigenomic domains in cancer cells: Characterization and subtle variations'. Together they form a unique fingerprint.

Cite this