Combining analysis of multi-parametric MR images into a convolutional neural network: Precise target delineation for vestibular schwannoma treatment planning

Wei Kai Lee, Chih Chun Wu, Cheng Chia Lee, Chia Feng Lu, Huai Che Yang, Tzu Hsuan Huang, Chun Yi Lin, Wen Yuh Chung, Po Shan Wang, Hsiu Mei Wu, Wan Yuo Guo*, Yu Te Wu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Manual delineation of vestibular schwannoma (VS) by magnetic resonance (MR) imaging is required for diagnosis, radiosurgery dose planning, and follow-up tumor volume measurement. A rapid and objective automatic segmentation method is required, but problems have been encountered due to the low through-plane resolution of standard VS MR scan protocols and because some patients have non-homogeneous cystic areas within their tumors. In this study, we retrospectively collected multi-parametric MR images from 516 patients with VS; these were extracted from the Gamma Knife radiosurgery planning system and consisted of T1-weighted (T1W), T2-weighted (T2W), and T1W with contrast (T1W + C) images. We developed an end-to-end deep-learning-based method via an automatic preprocessing pipeline. A two-pathway U-Net model involving two sizes of convolution kernel (i.e., 3 × 3 × 1 and 1 × 1 × 3) was used to extract the in-plane and through-plane features of the anisotropic MR images. A single-pathway model that adopted the same architecture as the two-pathway model, but used a kernel size of 3 × 3 × 3, was also developed for comparison purposes. In addition, we used multi-parametric MR images with different image contrasts as the model training input in order to effectively segment tumors with solid as well as cystic parts. The results of the automatic segmentation demonstrated that (1) the two-pathway model outperformed single-pathway model in terms of dice scores (0.90 ± 0.05 versus 0.87 ± 0.07); both of them having been trained using the T1W, T1W + C and T2W anisotropic MR images, (2) the optimal single-parametric two-pathway model (dice score: 0.88 ± 0.06) was then trained using the T1W + C images, and (3) the two-pathway models trained using bi-parametric (T1W + C and T2W) and tri-parametric (T1W, T2W, and T1W + C) images outperformed the model trained using the single-parametric (T1W + C) images (dice scores: 0.89 ± 0.05 and 0.90 ± 0.05, respectively, larger than 0.88 ± 0.06) because it showed improved segmentation of the non-homogeneous parts of the tumors. The proposed two-pathway U-Net model outperformed the single-pathway U-Net model when segmenting VS using anisotropic MR images. The multi-parametric models effectively improved on the defective segmentation obtained using the single-parametric models by separating the non-homogeneous tumors into their solid and cystic parts.

Original languageEnglish
Article number101911
JournalArtificial Intelligence in Medicine
Volume107
DOIs
StatePublished - Jul 2020

Keywords

  • Convolutional neural network
  • gamma knife
  • Magnetic resonance imaging
  • Vestibular schwannoma

Fingerprint

Dive into the research topics of 'Combining analysis of multi-parametric MR images into a convolutional neural network: Precise target delineation for vestibular schwannoma treatment planning'. Together they form a unique fingerprint.

Cite this