Colorization of Depth Map via Disentanglement

Chung Sheng Lai*, Zunzhi You, Ching-Chun Huang, Yi Hsuan Tsai, Wei-Chen Chiu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Vision perception is one of the most important components for a computer or robot to understand the surrounding scene and achieve autonomous applications. However, most of the vision models are based on the RGB sensors, which in general are vulnerable to the insufficient lighting condition. In contrast, the depth camera, another widely-used visual sensor, is capable of perceiving 3D information and being more robust to the lack of illumination, but unable to obtain appearance details of the surrounding environment compared to RGB cameras. To make RGB-based vision models workable for the low-lighting scenario, prior methods focus on learning the colorization on depth maps captured by depth cameras, such that the vision models can still achieve reasonable performance on colorized depth maps. However, the colorization produced in this manner is usually unrealistic and constrained to the specific vision model, thus being hard to generalize for other tasks to use. In this paper, we propose a depth map colorization method via disentangling appearance and structure factors, so that our model could 1) learn depth-invariant appearance features from an appearance reference and 2) generate colorized images by combining a given depth map and the appearance feature obtained from any reference. We conduct extensive experiments to show that our colorization results are more realistic and diverse in comparison to several image translation baselines.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
EditorsAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
PublisherSpringer Science and Business Media Deutschland GmbH
Pages450-466
Number of pages17
ISBN (Print)9783030585709
DOIs
StatePublished - 2020
Event16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: 23 Aug 202028 Aug 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12352 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom
CityGlasgow
Period23/08/2028/08/20

Keywords

  • Depth colorization
  • Disentanglement
  • Image translation

Fingerprint

Dive into the research topics of 'Colorization of Depth Map via Disentanglement'. Together they form a unique fingerprint.

Cite this