TY - JOUR
T1 - Cognitive and motor dual task gait training exerted specific training effects on dual task gait performance in individuals with Parkinson’s disease
T2 - A randomized controlled pilot study
AU - Yang, Yea Ru
AU - Cheng, Shih Jung
AU - Lee, Yu Ju
AU - Liu, Yan Ci
AU - Wang, Ray Yau
N1 - Publisher Copyright:
© 2019 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019/6
Y1 - 2019/6
N2 - Gait impairments in Parkinson’s disease (PD) are aggravated under dual task conditions. Providing effective training to enhance different dual task gait performance is important for PD rehabilitation. This pilot study aimed to investigate the effects of cognitive and motor dual task gait training on dual task gait performance in PD. Eighteen PD participants (n = 6 per training group) were assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or general gait training (control) group randomly. The training was 30 min each session, 3 sessions per week for 4 weeks. Primary outcomes including gait performance during cognitive dual task, motor dual task, and single walking were assessed at pre- and post-training. The results showed decreased double support time during cognitive dual task walking after CDTT (-17.1±10.3%) was significantly more than MDTT (6.3±25.6%, p = .006) and control training (-5.6±7.8%, p = .041). Stride time variability during motor dual task walking decreased more after MDTT (-16.3±32.3%) than CDTT (38.6±24.0%, p = .015) and control training (36.8±36.4%, p = .041). CDTT also improved motor dual task walking performance especially on gait speed (13.8±10.71%, p = .046) stride length (10.5±6.6%, p = .046), and double support time (-8.0±2.0%, p = .028). CDTT improved single walking performance as well on gait speed (11.4±5.5%, p = .046), stride length (9.2±4.6%, p = .028), and double support time (-8.1±3.0%, p = .028). In summary, our preliminary data showed 12-session of CDTT decreased double support time during cognitive dual task walking, and MDTT reduced gait variability during motor dual task walking. Different training strategy can be adopted for possibly different training effects in people with PD.
AB - Gait impairments in Parkinson’s disease (PD) are aggravated under dual task conditions. Providing effective training to enhance different dual task gait performance is important for PD rehabilitation. This pilot study aimed to investigate the effects of cognitive and motor dual task gait training on dual task gait performance in PD. Eighteen PD participants (n = 6 per training group) were assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or general gait training (control) group randomly. The training was 30 min each session, 3 sessions per week for 4 weeks. Primary outcomes including gait performance during cognitive dual task, motor dual task, and single walking were assessed at pre- and post-training. The results showed decreased double support time during cognitive dual task walking after CDTT (-17.1±10.3%) was significantly more than MDTT (6.3±25.6%, p = .006) and control training (-5.6±7.8%, p = .041). Stride time variability during motor dual task walking decreased more after MDTT (-16.3±32.3%) than CDTT (38.6±24.0%, p = .015) and control training (36.8±36.4%, p = .041). CDTT also improved motor dual task walking performance especially on gait speed (13.8±10.71%, p = .046) stride length (10.5±6.6%, p = .046), and double support time (-8.0±2.0%, p = .028). CDTT improved single walking performance as well on gait speed (11.4±5.5%, p = .046), stride length (9.2±4.6%, p = .028), and double support time (-8.1±3.0%, p = .028). In summary, our preliminary data showed 12-session of CDTT decreased double support time during cognitive dual task walking, and MDTT reduced gait variability during motor dual task walking. Different training strategy can be adopted for possibly different training effects in people with PD.
UR - http://www.scopus.com/inward/record.url?scp=85067393124&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0218180
DO - 10.1371/journal.pone.0218180
M3 - Article
C2 - 31220121
AN - SCOPUS:85067393124
SN - 1932-6203
VL - 14
JO - PLoS ONE
JF - PLoS ONE
IS - 6
M1 - e0218180
ER -