Co-chaperone p23 Regulates C. elegans Lifespan in Response to Temperature

Makoto Horikawa, Surojit Sural, Ao Lin Hsu, Adam Antebi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

30 Scopus citations


Temperature potently modulates various physiologic processes including organismal motility, growth rate, reproduction, and ageing. In ectotherms, longevity varies inversely with temperature, with animals living shorter at higher temperatures. Thermal effects on lifespan and other processes are ascribed to passive changes in metabolic rate, but recent evidence also suggests a regulated process. Here, we demonstrate that in response to temperature, daf-41/ZC395.10, the C. elegans homolog of p23 co-chaperone/prostaglandin E synthase-3, governs entry into the long-lived dauer diapause and regulates adult lifespan. daf-41 deletion triggers constitutive entry into the dauer diapause at elevated temperature dependent on neurosensory machinery (daf-10/IFT122), insulin/IGF-1 signaling (daf-16/FOXO), and steroidal signaling (daf-12/FXR). Surprisingly, daf-41 mutation alters the longevity response to temperature, living longer than wild-type at 25°C but shorter than wild-type at 15°C. Longevity phenotypes at 25°C work through daf-16/FOXO and heat shock factor hsf-1, while short lived phenotypes converge on daf-16/FOXO and depend on the daf-12/FXR steroid receptor. Correlatively daf-41 affected expression of DAF-16 and HSF-1 target genes at high temperature, and nuclear extracts from daf-41 animals showed increased occupancy of the heat shock response element. Our studies suggest that daf-41/p23 modulates key transcriptional changes in longevity pathways in response to temperature.

Original languageEnglish
Article numbere1005023
JournalPLoS Genetics
Issue number4
StatePublished - 1 Apr 2015


Dive into the research topics of 'Co-chaperone p23 Regulates C. elegans Lifespan in Response to Temperature'. Together they form a unique fingerprint.

Cite this