Classification of hemodynamics from dynamic-susceptibility-contrast magnetic resonance (DSC-MR) brain images using noiseless independent factor analysis

Yen Chun Chou, Michael Mu Huo Teng, Wan Yuo Guo, Jen Chuen Hsieh, Yu Te Wu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Dynamic-susceptibility-contrast (DSC) magnetic resonance imaging records signal changes on images when the injected contrast-agent particles pass through a human brain. The temporal signal changes on different brain tissues manifest distinct blood-supply patterns which are vital for the profound analysis of cerebral hemodynamics. Under the assumption of the spatial independence among these patterns, noiseless independent factor analysis (IFA) was first applied to decompose the DSC-MR data into different independent-factor images with corresponding signal-time curves. A major tissue type, such as artery, gray matter, white matter, vein, sinus, and choroid plexus, etc., on each independent-factor image was further segmented out by an optimal threshold. Based on the averaged signal-time curve on the arterial area, the cerebral hemodynamic parameters, such as relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT), were computed and their averaged ratios between gray matter and white matter for normal subjects were in good agreement with those in the literature. Data of a stenosis patient before and after treatment were analyzed and the result illustrates that this method is effective in extracting spatiotemporal blood-supply patterns which improves differentiation of pathological and non-pathological hemodynamics.

Original languageEnglish
Pages (from-to)242-253
Number of pages12
JournalMedical Image Analysis
Volume11
Issue number3
DOIs
StatePublished - Jun 2007

Keywords

  • Cerebral blood hemodynamics
  • Image segmentation
  • Magnetic resonance imaging (MRI)
  • Noiseless independent factor analysis (IFA)

Fingerprint

Dive into the research topics of 'Classification of hemodynamics from dynamic-susceptibility-contrast magnetic resonance (DSC-MR) brain images using noiseless independent factor analysis'. Together they form a unique fingerprint.

Cite this