Chloroquine enhances gefitinib cytotoxicity in gefitinib-resistant nonsmall cell lung cancer cells

Mei Chuan Tang, Mei Yi Wu, Ming Hung Hwang, Ya Ting Chang, Hui Ju Huang, Anya Maan Yuh Lin, James Chih Hsin Yang

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), including gefitinib, are effective for non-small cell lung cancer (NSCLC) patients with EGFR mutations. However, these patients eventually develop resistance to EGFR-TKI. The goal of the present study was to investigate the involvement of autophagy in gefitinib resistance. We developed gefitinib-resistant cells (PC-9/gef) from PC-9 cells (containing exon 19 deletion EGFR ) after long-term exposure in gefitinib. PC-9/gef cells (B4 and E3) were 200-fold more resistant to gefitinib than PC-9/wt cells. Compared with PC-9/wt cells, both PC-9/gefB4 and PC-9/gefE3 cells demonstrated higher basal LC3-II levels which were inhibited by 3-methyladenine (3-MA, an autophagy inhibitor) and potentiated by chloroquine (CQ, an inhibitor of autophagolysosomes formation), indicating elevated autophagy in PC-9/gef cells. 3-MA and CQ concentration-dependently inhibited cell survival of both PC-9wt and PC-9/gef cells, suggesting that autophagy may be pro-survival. Furthermore, gefitinib increased LC3-II levels and autolysosome formation in both PC-9/wt cells and PC-9/gef cells. In PC-9/wt cells, CQ potentiated the cytotoxicity by low gefitinib (3nM). Moreover, CQ overcame the acquired gefitinib resistance in PC-9/gef cells by enhancing gefitinib-induced cytotoxicity, activation of caspase 3 and poly (ADP-ribose) polymerase cleavage. Using an in vivo model xenografting with PC-9/wt and PC-9/gefB4 cells, oral administration of gefitinib (50 mg/kg) completely inhibited the tumor growth of PC-9/wt but not PC-9/gefB4cells. Combination of CQ (75 mg/kg, i.p.) and gefitinib was more effective than gefitinib alone in reducing the tumor growth of PC-9/gefB4. Our data suggest that inhibition of autophagy may be a therapeutic strategy to overcome acquired resistance of gefitinib in EGFR mutation NSCLC patients.

Original languageEnglish
Article numbere0119135
JournalPLoS ONE
Volume10
Issue number3
DOIs
StatePublished - 25 Mar 2015

Fingerprint

Dive into the research topics of 'Chloroquine enhances gefitinib cytotoxicity in gefitinib-resistant nonsmall cell lung cancer cells'. Together they form a unique fingerprint.

Cite this