CHFDS: Clustered-based Hierarchical Federated Learning Framework with Differential Privacy and Secure Aggregation

Chih Hung Han, Wei Chih Yin, Chia Yu Lin*, Ted T. Kuo

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Federated learning is proposed to solve data privacy and security issues for traditional machine learning, which requires the training dataset to be stored locally on a machine or data center for training. However, federated learning may have problems like Non-Independent and Identically Distributed (Non-IID) data and private security. Non-IID can lead to lower training accuracy than expected, and there may be a risk of privacy leakage in the data uploaded by clients. Therefore, this paper proposes CHFDS: Clustered-based Hierarchical Federated Learning Framework with Differential Privacy and Secure Aggregation. Before training begins, we cluster all clients so that the data distribution between clients in each group is similar. This means only a random subset of clients from each cluster is selected in each training round instead of all clients participating in the training. We can use this method to adjust the data balance of participating training. Finally, we add differential privacy and secure aggregation to the clustering and training process to improve the privacy and security of the proposed clustered federated learning framework.

Original languageEnglish
Title of host publication2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages215-216
Number of pages2
ISBN (Electronic)9798350324174
DOIs
StatePublished - 2023
Event2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Pingtung, Taiwan
Duration: 17 Jul 202319 Jul 2023

Publication series

Name2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Proceedings

Conference

Conference2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023
Country/TerritoryTaiwan
CityPingtung
Period17/07/2319/07/23

Fingerprint

Dive into the research topics of 'CHFDS: Clustered-based Hierarchical Federated Learning Framework with Differential Privacy and Secure Aggregation'. Together they form a unique fingerprint.

Cite this