Abstract
Transition metal high-entropy oxides (HEOs) are an attractive class of anode materials for high-performance lithium-ion batteries (LIBs). However, owing to the multiple electroactive centers of HEOs, the Li+ storage mechanism is complex and debated in the literature. In this work, operando quick-scanning X-ray absorption spectroscopy (XAS) is used to study the lithiation/delithiation mechanism of the Cobalt-free spinel (CrMnFeNiCu)3O4 HEO. A monochromator oscillation frequency of 2 Hz is used and 240 spectra are integrated to achieve a 2 min time resolution. High-photon-flux synchrotron radiation is employed to increase the XAS sensitivity. The results indicate that the Cu2+ and Ni2+ cations are reduced to their metallic states during lithiation but their oxidation reactions are less favorable compared to the other elements upon delithiation. The Mn2+/3+ and Fe2+/3+ cations undergo two-step conversion reactions to form metallic phases, with MnO and FeO as the intermediate species, respectively. During delithiation, the oxidation of Mn occurs prior to that of Fe. The Cr3+ cations are reduced to CrO and then Cr0 during lithiation. A relatively large overpotential is required to activate the Cr reoxidation reaction. The Cr3+ cations are found after delithiation. These results can guide the material design of HEOs for improving LIB performance.
Original language | English |
---|---|
Article number | 2201219 |
Journal | Advanced Science |
Volume | 9 |
Issue number | 21 |
DOIs | |
State | Published - 25 Jul 2022 |
Keywords
- Li-ion batteries
- charge storage mechanism
- high energy density
- high-entropy anode
- lithiation/delithiation