TY - JOUR
T1 - Characterization and identification of lysine crotonylation sites based on machine learning method on both plant and mammalian
AU - Wang, Rulan
AU - Wang, Zhuo
AU - Wang, Hongfei
AU - Pang, Yuxuan
AU - Lee, Tzong Yi
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12
Y1 - 2020/12
N2 - Lysine crotonylation (Kcr) is a type of protein post-translational modification (PTM), which plays important roles in a variety of cellular regulation and processes. Several methods have been proposed for the identification of crotonylation. However, most of these methods can predict efficiently only on histone or non-histone protein. Therefore, this work aims to give a more balanced performance in different species, here plant (non-histone) and mammalian (histone) are involved. SVM (support vector machine) and RF (random forest) were employed in this study. According to the results of cross-validations, the RF classifier based on EGAAC attribute achieved the best predictive performance which performs competitively good as existed methods, meanwhile more robust when dealing with imbalanced datasets. Moreover, an independent test was carried out, which compared the performance of this study and existed methods based on the same features or the same classifier. The classifiers of SVM and RF could achieve best performances with 92% sensitivity, 88% specificity, 90% accuracy, and an MCC of 0.80 in the mammalian dataset, and 77% sensitivity, 83% specificity, 70% accuracy and 0.54 MCC in a relatively small dataset of mammalian and a large-scaled plant dataset respectively. Moreover, a cross-species independent testing was also carried out in this study, which has proved the species diversity in plant and mammalian.
AB - Lysine crotonylation (Kcr) is a type of protein post-translational modification (PTM), which plays important roles in a variety of cellular regulation and processes. Several methods have been proposed for the identification of crotonylation. However, most of these methods can predict efficiently only on histone or non-histone protein. Therefore, this work aims to give a more balanced performance in different species, here plant (non-histone) and mammalian (histone) are involved. SVM (support vector machine) and RF (random forest) were employed in this study. According to the results of cross-validations, the RF classifier based on EGAAC attribute achieved the best predictive performance which performs competitively good as existed methods, meanwhile more robust when dealing with imbalanced datasets. Moreover, an independent test was carried out, which compared the performance of this study and existed methods based on the same features or the same classifier. The classifiers of SVM and RF could achieve best performances with 92% sensitivity, 88% specificity, 90% accuracy, and an MCC of 0.80 in the mammalian dataset, and 77% sensitivity, 83% specificity, 70% accuracy and 0.54 MCC in a relatively small dataset of mammalian and a large-scaled plant dataset respectively. Moreover, a cross-species independent testing was also carried out in this study, which has proved the species diversity in plant and mammalian.
UR - http://www.scopus.com/inward/record.url?scp=85096625486&partnerID=8YFLogxK
U2 - 10.1038/s41598-020-77173-0
DO - 10.1038/s41598-020-77173-0
M3 - Article
C2 - 33235255
AN - SCOPUS:85096625486
SN - 2045-2322
VL - 10
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 20447
ER -