Channel occupancy times and handoff rate for mobile computing and PCS networks

Yuguang Fang*, Imrich Chlamtac, Yi-Bing Lin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

223 Scopus citations

Abstract

This paper presents a study of channel occupancy times and handoff rate for mobile computing in MC (Mobile Computing) and PCS (Personal Communications Services) networks, using general operational assumptions. It is shown that, for exponentially distributed call holding times, a distribution more appropriate for conventional voice telephony, the channel occupancy times are exponentially distributed if and only if the cell residence times are exponentially distributed. It is further shown that the merged traffic from new calls and handoff calls is Poisson if and only if the cell residence times are exponentially distributed, too. When cell residence times follow a general distribution, a more appropriate way to model mobile computing sessions, new formulae for channel occupancy time distributions are obtained. Moreover, when the call holding times and the cell residence times have general (nonlattice) distributions, general formulae for computing the handoff rate during a call connection and handoff call arrival rate to a cell are given. Our analysis illustrates why the exponential assumption for call holding time results in the underestimation of handoff rate, which then leads to the actual blocking probabilities being higher than the blocking probabilities for MC/PCS networks designed using the exponential distribution approximation for call holding time. The analytical results presented in this paper can be expected to play a significant role in teletraffic analysis and system design for MC/PCS networks.

Original languageEnglish
Article number689647
Pages (from-to)679-692
Number of pages14
JournalIEEE Transactions on Computers
Volume47
Issue number6
DOIs
StatePublished - Jun 1998

Keywords

  • Call blocking
  • Call holding time
  • Cell residence times
  • Channel occupancy times
  • Handoff rate
  • Mobile computing
  • PCS

Fingerprint

Dive into the research topics of 'Channel occupancy times and handoff rate for mobile computing and PCS networks'. Together they form a unique fingerprint.

Cite this