Chalcones as potent antiplatelet agents and calcium channel blockers

Chun Nan Lin, Hsin Kaw Hsieh, Horng Huey Ko, Mei Feng Hsu, Ya Ling Chang, Mei Ing Chung, Jaw Jou Kang, Jih Pyang Wang, Che Ming Teng

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

In an effort to continually develop potent antiplatelet agents with vasorelaxing and antiinflammatory actions, a novel series of antiinflammatory chalcones was continually screened to evaluate their antiplatelet and vasorelaxing effects. Their structure-activity relationships and mode of action were discussed and characterized. A novel series of antiinflammatory chalcones was studied on antiplatelet effect in rabbit washed platelets and human platelet-rich plasma (PRP) and vasorelaxing effect in rat thoracic aorta. Arachidonic acid-induced platelet aggregation was potently inhibited by almost all the chalcone derivatives and 13-15 also had a potent inhibitory effect on cyclooxygenase. The selective chalcones 12-16 tested in human PRP significantly inhibited secondary aggregation induced by adrenaline. In rat thoracic aorta, most of chalcones at high concentration significantly depressed the contractions induced by Ca2+ (1.9 mM) in high K+ (80 mM) medium and the phasic and tonic contractions caused by norepinephrine (3 μM). In the rat thoracic aorta, the phenylephrine- and high K+-induced 45Ca2+ influx were both inhibited by a selective chalcone derivative, 14. These results indicate that the antiplatelet actions of chalcones are mainly mediated through the suppression of cyclooxygenase activity and reduced thromboxane formation and their inhibitory effects on the contractile response caused by high K+ and norepinephrine in rat thoracic aorta are mainly due to inhibition of Ca2+ influx through both voltage-dependent and receptor-operated Ca2+ channels.

Original languageEnglish
Pages (from-to)9-14
Number of pages6
JournalDrug Development Research
Volume53
Issue number1
DOIs
StatePublished - 2001

Keywords

  • Antiplatelet
  • Calcium channel blocker
  • Chalcones
  • Cyclooxygenase
  • Vasorelaxing

Fingerprint

Dive into the research topics of 'Chalcones as potent antiplatelet agents and calcium channel blockers'. Together they form a unique fingerprint.

Cite this