Abstract
This study presents the liquid crystal Fabry–Pérot etalon (LC-FP) as the preferred laser wavelength tuning solution within a erbium-doped fiber ring laser architecture. The laser cavity wavelength can be adjusted by applying varying voltages to the LC-FP. Furthermore, tuning the laser wavelength can be facilitated by modifying the incident light through changes in the steering angle of the LC-FP, which is attributed to the angular dispersion characteristics of the device. The operational range for the steering angle of the LC-FP is ± 4 to 18 degrees. This architectural framework is adept at facilitating the generation of single-wavelength and dual-wavelength lasers within the C band. The tunable range for a single wavelength is approximately 13 nm, while the tunable range for dual wavelengths is around 14 nm, with a wavelength spacing of approximately 17.5 nm. These capabilities are primarily influenced by the operational wavelength of the erbium-doped fiber amplifier (EDFA), the operating wavelength of the collimator that directs the fiber optic beam into the LC-FP, and the fixed thickness of the LC-FP.
Original language | English |
---|---|
Article number | 822 |
Journal | Applied Sciences (Switzerland) |
Volume | 15 |
Issue number | 2 |
DOIs | |
State | Published - Jan 2025 |
Keywords
- erbium-doped fiber ring laser
- Fabry–Pérot etalon
- liquid crystal