TY - JOUR
T1 - Camera-Based Blood Pressure Estimation via Windkessel Model and Waveform Features
AU - Wu, Bing Jhang
AU - Wu, Bing Fei
AU - Hsu, Chi Po
N1 - Publisher Copyright:
© 1963-2012 IEEE.
PY - 2023
Y1 - 2023
N2 - Blood pressure (BP) is generally regarded as the vital sign most strongly correlated with human health. However, for decades, BP measurement has involved a cuff, which causes discomfort and even carries a risk of infection, given the current prevalence of COVID-19. Some studies address these problems using remote photoplethysmography (rPPG), which has shown great success in heart rate detection. Nevertheless, these approaches are not robust, and few have been evaluated with a sufficiently large dataset. We propose an rPPG-based BP estimation algorithm that predicts BP by leveraging the Windkessel model and hand-crafted waveform characteristics. A waveform processing procedure is presented for the rPPG signals to obtain a robust waveform template and thus extract BP-related features. Redundant and unstable features are eliminated via Monte Carlo simulation and according to their relationship with latent parameters (LSs) in the Windkessel model. For a comprehensive evaluation, the Chiao Tung BP (CTBP) dataset was constructed. The experiment was conducted over a four-week period of time to evaluate the validity period of the personalization in our system. On all the data, the proposed method outperforms the benchmark algorithms and yields mean absolute errors (MAEs) of 6.48 and 5.06 mmHg for systolic BP (SBP) and diastolic BP (DBP), respectively. The performance achieves a 'B' grade according to the validation protocol from the British Hypertension Society (BHS) for both SBP and DBP.
AB - Blood pressure (BP) is generally regarded as the vital sign most strongly correlated with human health. However, for decades, BP measurement has involved a cuff, which causes discomfort and even carries a risk of infection, given the current prevalence of COVID-19. Some studies address these problems using remote photoplethysmography (rPPG), which has shown great success in heart rate detection. Nevertheless, these approaches are not robust, and few have been evaluated with a sufficiently large dataset. We propose an rPPG-based BP estimation algorithm that predicts BP by leveraging the Windkessel model and hand-crafted waveform characteristics. A waveform processing procedure is presented for the rPPG signals to obtain a robust waveform template and thus extract BP-related features. Redundant and unstable features are eliminated via Monte Carlo simulation and according to their relationship with latent parameters (LSs) in the Windkessel model. For a comprehensive evaluation, the Chiao Tung BP (CTBP) dataset was constructed. The experiment was conducted over a four-week period of time to evaluate the validity period of the personalization in our system. On all the data, the proposed method outperforms the benchmark algorithms and yields mean absolute errors (MAEs) of 6.48 and 5.06 mmHg for systolic BP (SBP) and diastolic BP (DBP), respectively. The performance achieves a 'B' grade according to the validation protocol from the British Hypertension Society (BHS) for both SBP and DBP.
KW - Blood pressure (BP) measurement
KW - cuffless blood pressure measurement
KW - remote photoplethysmography (rPPG)
KW - rPPG feature selection
KW - windkessel model
UR - http://www.scopus.com/inward/record.url?scp=85144028941&partnerID=8YFLogxK
U2 - 10.1109/TIM.2022.3224534
DO - 10.1109/TIM.2022.3224534
M3 - Article
AN - SCOPUS:85144028941
SN - 0018-9456
VL - 72
JO - IEEE Transactions on Instrumentation and Measurement
JF - IEEE Transactions on Instrumentation and Measurement
M1 - 5004113
ER -