CAFE: Catastrophic Data Leakage in Vertical Federated Learning

Xiao Jin, Pin Yu Chen, Chia Yi Hsu, Chia Mu Yu, Tianyi Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

101 Scopus citations

Abstract

Recent studies show that private training data can be leaked through the gradients sharing mechanism deployed in distributed machine learning systems, such as federated learning (FL). Increasing batch size to complicate data recovery is often viewed as a promising defense strategy against data leakage. In this paper, we revisit this defense premise and propose an advanced data leakage attack with theoretical justification to efficiently recover batch data from the shared aggregated gradients. We name our proposed method as catastrophic data leakage in vertical federated learning (CAFE). Comparing to existing data leakage attacks, our extensive experimental results on vertical FL settings demonstrate the effectiveness of CAFE to perform large-batch data leakage attack with improved data recovery quality. We also propose a practical countermeasure to mitigate CAFE. Our results suggest that private data participated in standard FL, especially the vertical case, have a high risk of being leaked from the training gradients. Our analysis implies unprecedented and practical data leakage risks in those learning settings. The code of our work is available at https://github.com/DeRafael/CAFE.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages994-1006
Number of pages13
ISBN (Electronic)9781713845393
StatePublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: 6 Dec 202114 Dec 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume2
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period6/12/2114/12/21

Fingerprint

Dive into the research topics of 'CAFE: Catastrophic Data Leakage in Vertical Federated Learning'. Together they form a unique fingerprint.

Cite this