Bonding characterization, density measurement, and thermal diffusivity studies of amorphous silicon carbon nitride and boron carbon nitride thin films

S. Chattopadhyay*, L. C. Chen, S. C. Chien, S. T. Lin, K. H. Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Thermal diffusivity (α) of amorphous silicon carbon nitride (a-SiC xN y) and boron carbon nitride (a-BC xN y) thin films on crystalline silicon has been studied as a function of the carbon content and thickness of the films using the traveling wave technique. The thermal diffusivity showed a steady fall from ∼0.35 to about 0.15cm 2/s for a-SiC xN y films as the carbon content increased from 30 to ∼70at.%. This decrease in thermal diffusivity was also accompanied by a decrease in the film density from 3.35 to ∼2.3g/cm 3 as a function of the carbon content of the a-SiC xN y films. In case of a-BC xN y, a peak in thermal diffusivity (0.6cm 2/s) was detected at a carbon concentration of ∼25at.% which reduced to 0.2cm 2/s for a carbon concentration of ∼60at.% in the films. The value of the density also showed a peak (∼2g/cm 3) at a carbon concentration of 25 at.% before decreasing in the a-BC xN y films. A study of bonding characterization revealed a dominant lower coordinated C(sp)-N phase at higher carbon concentrations that played a detrimental role in the film properties observed. A critical issue of the thickness dependence of thermal diffusivity in a layered structure of a-SiC xN y and a-BC xN y on silicon is addressed with information extracted from aluminum thin films on different substrates. An empirical model is proposed which can explain the reported thickness and substrate dependence of the thermal diffusivity data.

Original languageEnglish
Pages (from-to)5150-5158
Number of pages9
JournalJournal of Applied Physics
Volume92
Issue number9
DOIs
StatePublished - 1 Nov 2002

Fingerprint

Dive into the research topics of 'Bonding characterization, density measurement, and thermal diffusivity studies of amorphous silicon carbon nitride and boron carbon nitride thin films'. Together they form a unique fingerprint.

Cite this