Blur kernel estimation using normalized color-line priors

Wei Sheng Lai, Jian Jiun Ding, Yen-Yu Lin, Yung Yu Chuang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

106 Scopus citations

Abstract

This paper proposes a single-image blur kernel estimation algorithm that utilizes the normalized color-line prior to restore sharp edges without altering edge structures or enhancing noise. The proposed prior is derived from the color-line model, which has been successfully applied to non-blind deconvolution and many computer vision problems. In this paper, we show that the original color-line prior is not effective for blur kernel estimation and propose a normalized color-line prior which can better enhance edge contrasts. By optimizing the proposed prior, our method gradually enhances the sharpness of the intermediate patches without using heuristic filters or external patch priors. The intermediate patches can then guide the estimation of the blur kernel. A comprehensive evaluation on a large image deblurring dataset shows that our algorithm achieves the state-of-the-art results.

Original languageEnglish
Title of host publicationIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
PublisherIEEE Computer Society
Pages64-72
Number of pages9
ISBN (Electronic)9781467369640
DOIs
StatePublished - 14 Oct 2015
EventIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 - Boston, United States
Duration: 7 Jun 201512 Jun 2015

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume07-12-June-2015
ISSN (Print)1063-6919

Conference

ConferenceIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
Country/TerritoryUnited States
CityBoston
Period7/06/1512/06/15

Fingerprint

Dive into the research topics of 'Blur kernel estimation using normalized color-line priors'. Together they form a unique fingerprint.

Cite this