TY - JOUR
T1 - Biphenyl Au(III) Complexes with Phosphine Ancillary Ligands
T2 - Synthesis, Optical Properties, and Electroluminescence in Light-Emitting Electrochemical Cells
AU - Yang, Jeannine
AU - Giuso, Valerio
AU - Hou, Min Chih
AU - Remadna, Edwyn
AU - Forté, Jérémy
AU - Su, Hai Ching
AU - Gourlaouen, Christophe
AU - Mauro, Matteo
AU - Bertrand, Benoît
N1 - Publisher Copyright:
© 2023 American Chemical Society.
PY - 2023/3/27
Y1 - 2023/3/27
N2 - A series of ten cationic complexes of the general formula [(C^C)Au(P^P)]X, where C^C = 4,4′-di-tert-butyl-1,1′-biphenyl, P^P is a diphosphine ligand, and X is a noncoordinating counteranion, have been synthesized and fully characterized by means of chemical and X-ray structural methods. All the complexes display a remarkable switch-on of the emission properties when going from a fluid solution to a solid state. In the latter, long-lived emission with lifetime τ = 1.8-83.0 μs and maximum in the green-yellow region is achieved with moderate to high photoluminescence quantum yield (PLQY). This emission is ascribed to an excited state with a mainly triplet ligand-centered (3LC) nature. This effect strongly indicates that rigidification of the environment helps to suppress nonradiative decay, which is mainly attributed to the large molecular distortion in the excited state, as supported by density functional theory (DFT) and time-dependent DFT (TD-DFT) computation. In addition, quenching intermolecular interactions of the emitter are avoided thanks to the steric hindrance of the substituents. Emissive properties are therefore restored efficiently. The influence of both diphosphine and anion has been investigated and rationalized as well. Using two complexes as examples and owing to their enhanced optical properties in the solid state, the first proof-of-concept of the use of gold(III) complexes as electroactive materials for the fabrication of light-emitting electrochemical cell (LEC) devices is herein demonstrated. The LECs achieve peak external quantum efficiency, current efficiency, and power efficiency up to ca. 1%, 2.6 cd A-1, and 1.1 lm W-1 for complex 1PF6 and 0.9%, 2.5 cd A-1, and 0.7 lm W-1 for complex 3, showing the potential use of these novel emitters as electroactive compounds in LEC devices.
AB - A series of ten cationic complexes of the general formula [(C^C)Au(P^P)]X, where C^C = 4,4′-di-tert-butyl-1,1′-biphenyl, P^P is a diphosphine ligand, and X is a noncoordinating counteranion, have been synthesized and fully characterized by means of chemical and X-ray structural methods. All the complexes display a remarkable switch-on of the emission properties when going from a fluid solution to a solid state. In the latter, long-lived emission with lifetime τ = 1.8-83.0 μs and maximum in the green-yellow region is achieved with moderate to high photoluminescence quantum yield (PLQY). This emission is ascribed to an excited state with a mainly triplet ligand-centered (3LC) nature. This effect strongly indicates that rigidification of the environment helps to suppress nonradiative decay, which is mainly attributed to the large molecular distortion in the excited state, as supported by density functional theory (DFT) and time-dependent DFT (TD-DFT) computation. In addition, quenching intermolecular interactions of the emitter are avoided thanks to the steric hindrance of the substituents. Emissive properties are therefore restored efficiently. The influence of both diphosphine and anion has been investigated and rationalized as well. Using two complexes as examples and owing to their enhanced optical properties in the solid state, the first proof-of-concept of the use of gold(III) complexes as electroactive materials for the fabrication of light-emitting electrochemical cell (LEC) devices is herein demonstrated. The LECs achieve peak external quantum efficiency, current efficiency, and power efficiency up to ca. 1%, 2.6 cd A-1, and 1.1 lm W-1 for complex 1PF6 and 0.9%, 2.5 cd A-1, and 0.7 lm W-1 for complex 3, showing the potential use of these novel emitters as electroactive compounds in LEC devices.
UR - http://www.scopus.com/inward/record.url?scp=85149944006&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.2c04293
DO - 10.1021/acs.inorgchem.2c04293
M3 - Article
C2 - 36897338
AN - SCOPUS:85149944006
SN - 0020-1669
VL - 62
SP - 4903
EP - 4921
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 12
ER -