Biodistributions and Imaging of Poly(ethylene glycol)-Conjugated Silicon Quantum Dot Nanoparticles in Osteosarcoma Models via Intravenous and Intratumoral Injections

Guo Chen, Lei Wang, Pengbo He, Taiyu Su, Qingxuan Lai, Hao Chung Kuo, Wen Wu*, Sung Liang Chen*, Chang Ching Tu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Osteosarcoma is a malignant tumor with relatively high mortality rates in children and adolescents. While nanoparticles have been widely used in assisting the diagnosis and treatment of cancers, the biodistributions of nanoparticles in osteosarcoma models have not been well studied. Herein, we synthesize biocompatible and highly photoluminescent silicon quantum dot nanoparticles (SiQDNPs) and investigate their biodistributions in osteosarcoma mouse models after intravenous and intratumoral injections by fluorescence imaging. The bovine serum albumin (BSA)-coated and poly(ethylene glycol) (PEG)-conjugated SiQDNPs, when dispersed in phosphate-buffered saline (PBS), can emit red photoluminescence with the photoluminescence quantum yield more than 30% and have very low in vitro and in vivo toxicity. The biodistributions after intravenous injections reveal that the SiQDNPs are mainly metabolized through the livers in mice, while only slight accumulation in the osteosarcoma tumor is observed. Furthermore, the PEG conjugation can effectively extend the circulation time. Finally, a mixture of SiQDNPs and indocyanine green (ICG), which complement each other in the spectral range and diffusion length, is directly injected into the tumor for imaging. After the injection, the SiQDNPs with relatively large particle sizes stay around the injection site, while the ICG molecules diffuse over a broad range, especially in the muscular tissue. By taking advantage of this property, the difference between the osteosarcoma tumor and normal muscular tissue is demonstrated.

Original languageEnglish
Pages (from-to)4856-4866
Number of pages11
JournalACS Applied Bio Materials
Volume6
Issue number11
DOIs
StatePublished - 20 Nov 2023

Keywords

  • biocompatibility
  • biodistribution
  • fluorescence imaging
  • osteosarcoma
  • silicon quantum dots

Fingerprint

Dive into the research topics of 'Biodistributions and Imaging of Poly(ethylene glycol)-Conjugated Silicon Quantum Dot Nanoparticles in Osteosarcoma Models via Intravenous and Intratumoral Injections'. Together they form a unique fingerprint.

Cite this