Beamformer-based imaging of phase-amplitude coupling using electromagnetic brain activity

Hui Ling Chan*, Yong Sheng Chen, Li Fen Chen, Sylvain Baillet

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Phase-amplitude coupling (PAC) between neural oscillations of different frequencies plays a crucial role in cognitive processing. Assessing the PAC at both sensor and source levels may encounter the problem of spurious coupling because of the volume conduction, field spread, and source leakage. This paper presents a novel method, beamformer-based imaging of PAC (BIPAC), to estimate PAC between sources from electromagnetic signals. For each targeted brain region, this method can extract the source component with the maximum PAC to the reference signal. The results from two simulated MEG data sets demonstrated that the proposed method can achieve high localization accuracy and low spurious coupling.

Original languageEnglish
Title of host publication2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7558-7561
Number of pages4
ISBN (Electronic)9781424492718
DOIs
StatePublished - 4 Nov 2015
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: 25 Aug 201529 Aug 2015

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2015-November
ISSN (Print)1557-170X

Conference

Conference37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Country/TerritoryItaly
CityMilan
Period25/08/1529/08/15

Fingerprint

Dive into the research topics of 'Beamformer-based imaging of phase-amplitude coupling using electromagnetic brain activity'. Together they form a unique fingerprint.

Cite this