Abstract
Image motion blur results from a combination of object motions and camera shakes, and such blurring effect is generally directional and non-uniform. Previous research attempted to solve non-uniform blurs using self-recurrent multi-scale, multi-patch, or multi-temporal architectures with self-attention to obtain decent results. However, using self-recurrent frameworks typically leads to a longer inference time, while inter-pixel or inter-channel self-attention may cause excessive memory usage. This paper proposes a Blur-aware Attention Network (BANet), that accomplishes accurate and efficient deblurring via a single forward pass. Our BANet utilizes region-based self-attention with multi-kernel strip pooling to disentangle blur patterns of different magnitudes and orientations and cascaded parallel dilated convolution to aggregate multi-scale content features. Extensive experimental results on the GoPro and RealBlur benchmarks demonstrate that the proposed BANet performs favorably against the state-of-the-arts in blurred image restoration and can provide deblurred results in real-time.
Original language | English |
---|---|
Pages (from-to) | 6789-6799 |
Number of pages | 11 |
Journal | IEEE Transactions on Image Processing |
Volume | 31 |
DOIs | |
State | Published - 2022 |
Keywords
- Image deblurring
- blur-aware attention module
- region-wise pooling attention