TY - JOUR
T1 - Band-gap dependence of field emission from one-dimensional nanostructures grown on n-type and p-type silicon substrates
AU - Chang, S.
AU - Chattopadhyay, S.
AU - Chen, C.
AU - Chen, H.
AU - Chen, W.
AU - Chen, F.
AU - Collazo, R.
AU - Sitar, Z.
PY - 2003
Y1 - 2003
N2 - Field emission of electrons from narrow-band-gap and wide-band-gap one-dimensional nanostructures were studied. N-type silicon substrates enhanced the emission from the low-band-gap silicon nanowires and carbon nanotubes, whereas p-type substrates were a better choice for field emission from wide-band-gap silicon carbon nitride nanocrystalline thin films and nanorods. The role of the substrate-nanostructure interface was modeled based on different junction mechanisms to explain, qualitatively, the fundamentally different emission behavior of these nanostructures when n- and p-type silicon substrates were used. The results could be explained on the basis of simple carrier transport across the silicon-silicon nanowire interface and subsequent tunneling of electrons for the silicon nanowires. Schottky barrier theory can explain the better field emission of electrons from the n-type silicon supported carbon nanotubes. The decreased barrier height at the interface of the silicon-silicon carbon nitride heterojunction, when p-type silicon substrate was used, could explain the superior field emission in comparison to when n-type silicon substrates were used.
AB - Field emission of electrons from narrow-band-gap and wide-band-gap one-dimensional nanostructures were studied. N-type silicon substrates enhanced the emission from the low-band-gap silicon nanowires and carbon nanotubes, whereas p-type substrates were a better choice for field emission from wide-band-gap silicon carbon nitride nanocrystalline thin films and nanorods. The role of the substrate-nanostructure interface was modeled based on different junction mechanisms to explain, qualitatively, the fundamentally different emission behavior of these nanostructures when n- and p-type silicon substrates were used. The results could be explained on the basis of simple carrier transport across the silicon-silicon nanowire interface and subsequent tunneling of electrons for the silicon nanowires. Schottky barrier theory can explain the better field emission of electrons from the n-type silicon supported carbon nanotubes. The decreased barrier height at the interface of the silicon-silicon carbon nitride heterojunction, when p-type silicon substrate was used, could explain the superior field emission in comparison to when n-type silicon substrates were used.
UR - http://www.scopus.com/inward/record.url?scp=0242692502&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.68.125322
DO - 10.1103/PhysRevB.68.125322
M3 - Article
AN - SCOPUS:0242692502
SN - 1098-0121
VL - 68
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 12
ER -