ATTENTION-GUIDED ADAPTATION FOR CODE-SWITCHING SPEECH RECOGNITION

Bobbi Aditya*, Mahdin Rohmatillah*, Liang Hsuan Tai, Jen Tzung Chien*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The prevalence of the powerful multilingual models, such as Whisper, has significantly advanced the researches on speech recognition. However, these models often struggle with handling the code-switching setting, which is essential in multilingual speech recognition. Recent studies have attempted to address this setting by separating the modules for different languages to ensure distinct latent representations for languages. Some other methods considered the switching mechanism based on language identification. In this study, a new attention-guided adaptation is proposed to conduct parameter-efficient learning for bilingual ASR. This method selects those attention heads in a model which closely express language identities and then guided those heads to be correctly attended with their corresponding languages. The experiments on the Mandarin-English code-switching speech corpus show that the proposed approach achieves a 14.2% mixed error rate, surpassing state-of-the-art method, where only 5.6% additional parameters over Whisper are trained.

Original languageEnglish
Title of host publication2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages10256-10260
Number of pages5
ISBN (Electronic)9798350344851
DOIs
StatePublished - 2024
Event49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Seoul, Korea, Republic of
Duration: 14 Apr 202419 Apr 2024

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
Country/TerritoryKorea, Republic of
CitySeoul
Period14/04/2419/04/24

Keywords

  • Attention guidance
  • bilingual speech recognition
  • code-switching
  • parameter efficiency

Fingerprint

Dive into the research topics of 'ATTENTION-GUIDED ADAPTATION FOR CODE-SWITCHING SPEECH RECOGNITION'. Together they form a unique fingerprint.

Cite this