TY - GEN
T1 - Attention-based Learning for Sleep Apnea and Limb Movement Detection using Wi-Fi CSI Signals
AU - Chang, Chi Che
AU - Hsiao, An Hung
AU - Shen, Li Hsiang
AU - Feng, Kai Ten
AU - Chen, Chia Yu
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Wi-Fi channel state information (CSI) has become a promising solution for non-invasive breathing and body motion monitoring during sleep. Sleep disorders of apnea and periodic limb movement disorder (PLMD) are often unconscious and fatal. The existing researches detect abnormal sleep disorders in impractically controlled environments. Moreover, it leads to compelling challenges to classify complex macro- and micro-scales of sleep movements as well as entangled similar waveforms of cases of apnea and PLMD. In this paper, we propose the attention-based learning for sleep apnea and limb movement detection (ALESAL) system that can jointly detect sleep apnea and PLMD under different sleep postures across a variety of patients. ALE-SAL contains antenna-pair and time attention mechanisms for mitigating the impact of modest antenna pairs and emphasizing the duration of interest, respectively. Performance results show that our proposed ALESAL system can achieve a weighted F1-score of 84.33, outperforming the other existing non-attention based methods of support vector machine and deep multilayer perceptron.
AB - Wi-Fi channel state information (CSI) has become a promising solution for non-invasive breathing and body motion monitoring during sleep. Sleep disorders of apnea and periodic limb movement disorder (PLMD) are often unconscious and fatal. The existing researches detect abnormal sleep disorders in impractically controlled environments. Moreover, it leads to compelling challenges to classify complex macro- and micro-scales of sleep movements as well as entangled similar waveforms of cases of apnea and PLMD. In this paper, we propose the attention-based learning for sleep apnea and limb movement detection (ALESAL) system that can jointly detect sleep apnea and PLMD under different sleep postures across a variety of patients. ALE-SAL contains antenna-pair and time attention mechanisms for mitigating the impact of modest antenna pairs and emphasizing the duration of interest, respectively. Performance results show that our proposed ALESAL system can achieve a weighted F1-score of 84.33, outperforming the other existing non-attention based methods of support vector machine and deep multilayer perceptron.
UR - http://www.scopus.com/inward/record.url?scp=85169817722&partnerID=8YFLogxK
U2 - 10.1109/VTC2023-Spring57618.2023.10200274
DO - 10.1109/VTC2023-Spring57618.2023.10200274
M3 - Conference contribution
AN - SCOPUS:85169817722
T3 - IEEE Vehicular Technology Conference
BT - 2023 IEEE 97th Vehicular Technology Conference, VTC 2023-Spring - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 97th IEEE Vehicular Technology Conference, VTC 2023-Spring
Y2 - 20 June 2023 through 23 June 2023
ER -