TY - GEN
T1 - Assessment of Quantitative Magnetoencephalography using Cross-frequency Phase-phase Coupling
AU - Lee, Pin Shiuan
AU - Chen, Yong-Sheng
AU - Chan, Hui Ling
AU - Chen, Li Fen
PY - 2019/1/31
Y1 - 2019/1/31
N2 - Cross-frequency phase-phase coupling (n:m CFC) within a cortical region has been proposed as a potential mechanism to regulate neural communication between different temporal scales. This study investigated n:m CFC values between high and low frequencies in resting-state networks using magnetoencephalographic (MEG) data. Simulation experiments with different frequency pairs were first conducted to evaluate the effect of SNR on the estimation of phase and CFC. The values of n:m CFC between each pair of delta, theta, alpha, beta, and gamma frequencies were estimated from eye-open resting-state MEG data. The topographic maps of CFC values between alpha and other frequencies were illustrated. The results of simulation data showed the increased accuracy of phase and n:m CFC estimation for balanced power of two targeted frequencies. Results of MEG data exhibited that CFC maps of low-alpha activity presented broadly distributed coupling with high frequencies (including beta and gamma) in the frontal regions of salient-ventral attention and frontoparietal control networks, whereas high-alpha activity coupling with the gamma band in the posterior part of frontoparietal control network. Our study demonstrates the versatile of n:m CFC values at rest in human brain. Caution should be considered when n:mCFC values would be used as an index of dysfunction at resting state in diseased brains.
AB - Cross-frequency phase-phase coupling (n:m CFC) within a cortical region has been proposed as a potential mechanism to regulate neural communication between different temporal scales. This study investigated n:m CFC values between high and low frequencies in resting-state networks using magnetoencephalographic (MEG) data. Simulation experiments with different frequency pairs were first conducted to evaluate the effect of SNR on the estimation of phase and CFC. The values of n:m CFC between each pair of delta, theta, alpha, beta, and gamma frequencies were estimated from eye-open resting-state MEG data. The topographic maps of CFC values between alpha and other frequencies were illustrated. The results of simulation data showed the increased accuracy of phase and n:m CFC estimation for balanced power of two targeted frequencies. Results of MEG data exhibited that CFC maps of low-alpha activity presented broadly distributed coupling with high frequencies (including beta and gamma) in the frontal regions of salient-ventral attention and frontoparietal control networks, whereas high-alpha activity coupling with the gamma band in the posterior part of frontoparietal control network. Our study demonstrates the versatile of n:m CFC values at rest in human brain. Caution should be considered when n:mCFC values would be used as an index of dysfunction at resting state in diseased brains.
KW - cross-frequency coupling
KW - magnetoencephalography
KW - phase synchronization
KW - resting-state network
UR - http://www.scopus.com/inward/record.url?scp=85062773118&partnerID=8YFLogxK
U2 - 10.1109/ICDSP.2018.8631615
DO - 10.1109/ICDSP.2018.8631615
M3 - Conference contribution
AN - SCOPUS:85062773118
T3 - International Conference on Digital Signal Processing, DSP
BT - 2018 IEEE 23rd International Conference on Digital Signal Processing, DSP 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 23rd IEEE International Conference on Digital Signal Processing, DSP 2018
Y2 - 19 November 2018 through 21 November 2018
ER -