TY - JOUR
T1 - Antioxidants Rich Herbal Formula Ger-Gen-Chyn-Lian-Tang Protects Lipotoxicity and Ameliorates Inflammation Signaling through Regulation of Mitochondrial Biogenesis and Mitophagy in Nonalcoholic Fatty Liver Disease Mice
AU - Wang, Cheng Hui
AU - Liu, Hsuan Miao
AU - Chang, Zi Yu
AU - Lee, Ming Chung
AU - Hsu, Chung Hua
AU - Lee, Tzung Yan
N1 - Publisher Copyright:
© 2022 The Author(s).
PY - 2022/8
Y1 - 2022/8
N2 - Background: Non-alcoholic fatty liver disease (NAFLD) has become a prevalent issue and a consequence of metabolic syndrome impact on human health. Both of anti-atherosclerosis and anti-hepatic fibrosis capabilities of herbal medicine Ger-Gen-Chyn-Lian-Tang (GGCLT) has attracted attention, but their molecular regulatory mechanisms in a NAFLD model have not been elucidated. The aim of the present study was to explore the bioactivity of db/db mice following treatment with GGCLT. Methods: NAFLD phenotype of db/db mice were treated with GGCLT and lipogenesis, mitochondria dysfunction, mitophagy, macrophage polarization and adipose tissue browning were then evaluated using qRT-PCR and/or Western blot analysis, immunofluorescence, and immunohistochemistry assays, respectively. Results: GGCLT not only decreased serum levels of TG and free fatty acids, but glucose and insulin tolerance test in db/db mice. In parallel, GGCLT reduced lipogenesis and hypoxia-inflammation cascades in NAFLD progression. GGCLT reduced lipid accumulation and was accompanied by the enhanced mitochondria biogenesis, M2 macrophage, and decreased M1 macrophage. The latter two events contributing to the anti-inflammation are resulting from mitochondria dynamics, and the lipotoxicity lowering effect of GGCLT of NAFLD mice is mediated by promoting mitophagy in Parkin-dependent and -independent pathways, by mitochondrial fusion over fission manner. GGCLT also inactivated lipogenesis and decreased lipid accumulation in epididymal white adipose tissue with a higher M2/M1 macrophage ratio. Conclusions: Besides in the liver, modulating of mitochondrial biogenesis and adipose tissue browning were characterized by increased Tmem26, Tfam, and Prdm16 expression by GGCLT in EWAT also contributes to the beneficial action in NAFLD.
AB - Background: Non-alcoholic fatty liver disease (NAFLD) has become a prevalent issue and a consequence of metabolic syndrome impact on human health. Both of anti-atherosclerosis and anti-hepatic fibrosis capabilities of herbal medicine Ger-Gen-Chyn-Lian-Tang (GGCLT) has attracted attention, but their molecular regulatory mechanisms in a NAFLD model have not been elucidated. The aim of the present study was to explore the bioactivity of db/db mice following treatment with GGCLT. Methods: NAFLD phenotype of db/db mice were treated with GGCLT and lipogenesis, mitochondria dysfunction, mitophagy, macrophage polarization and adipose tissue browning were then evaluated using qRT-PCR and/or Western blot analysis, immunofluorescence, and immunohistochemistry assays, respectively. Results: GGCLT not only decreased serum levels of TG and free fatty acids, but glucose and insulin tolerance test in db/db mice. In parallel, GGCLT reduced lipogenesis and hypoxia-inflammation cascades in NAFLD progression. GGCLT reduced lipid accumulation and was accompanied by the enhanced mitochondria biogenesis, M2 macrophage, and decreased M1 macrophage. The latter two events contributing to the anti-inflammation are resulting from mitochondria dynamics, and the lipotoxicity lowering effect of GGCLT of NAFLD mice is mediated by promoting mitophagy in Parkin-dependent and -independent pathways, by mitochondrial fusion over fission manner. GGCLT also inactivated lipogenesis and decreased lipid accumulation in epididymal white adipose tissue with a higher M2/M1 macrophage ratio. Conclusions: Besides in the liver, modulating of mitochondrial biogenesis and adipose tissue browning were characterized by increased Tmem26, Tfam, and Prdm16 expression by GGCLT in EWAT also contributes to the beneficial action in NAFLD.
KW - Ger-Gen-Chyn-Lian-Tang
KW - NAFLD
KW - adipose tissue browning
KW - lipotoxicity
KW - mitochondria biogenesis
KW - mitophagy
UR - http://www.scopus.com/inward/record.url?scp=85136940238&partnerID=8YFLogxK
U2 - 10.31083/j.fbl2708242
DO - 10.31083/j.fbl2708242
M3 - Article
C2 - 36042176
AN - SCOPUS:85136940238
SN - 2768-6701
VL - 27
JO - Frontiers in Bioscience - Landmark
JF - Frontiers in Bioscience - Landmark
IS - 8
M1 - 242
ER -