TY - JOUR
T1 - Anti-apoptotic and autophagic effect
T2 - Using conditioned medium from human bone marrow mesenchymal stem cells to treat human trabecular meshwork cells
AU - Chang, Yu Fan
AU - Cheng, Yung Hsin
AU - Ko, Yu Chieh
AU - Chiou, Shih Hwa
AU - Liu, Catherine Jui Ling
N1 - Publisher Copyright:
© 2022 The Japanese Society for Regenerative Medicine
PY - 2023/3
Y1 - 2023/3
N2 - Introduction: Glaucoma is a vision-threatening disease associated with accelerated aging of trabecular meshwork (TM) which results in elevated intraocular pressure (IOP). Increased oxidative stress in TM plays an important role in cellular molecular damage which leads to senescence. Autophagy is an intracellular lysosomal degradation process which is activated when cells are under stressful condition, and emerging studies have demonstrated increased expression of modulators of apoptosis and expression of autophagic cascade in ex-vivo TM specimens or cultured TM cells under oxidative stress. Recently, studies have shown neuroprotective and IOP-lowering effects after transplanting mesenchymal stem cells (MSCs) or injecting condition medium (CM) of MSCs into ocular hypertension animal models. However, knowledge of the underlying mechanism accounting for these effects is limited. Using condition medium (CM) from human bone marrow-derived mesenchymal stem cells (BM-MSCs), we investigated the effects of the CM derived from BM-MSCs on TM autophagy and apoptosis. Methods: H2O2 was added to culture medium of human TM cells to mimic oxidative damage in glaucomatous eyes, and the autophagic and anti-apoptotic effects of BM-MSCs-derived CM was explored on the oxidatively damaged cells. Mitochondrial ROS production was examined by MitoSOX™, apoptosis was evaluated using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) staining, and the expression of proteins involved in autophagy as well as extracellular matrix was investigated via Western blot. Results: There were no significant differences in TM cell viability when the cells were treated with different concentrations of CM in the absence of oxidative stress. Cell viability was significantly higher in oxidatively damaged TM cells treated with 1X or 5X CM compared to untreated TM cells under oxidative stress. The mitochondrial ROS level significantly increased with oxidative stress, which was mitigated in the CM treatment groups. DNA fragmentation significantly decreased in oxidatively stressed TM cells after treatment with CM. LCB3 II/LCB3 I was significantly elevated in the oxidative stress group compared to the control group and was significantly decreased in the CM treatment groups. Expression of fibronectin was not significantly different among the groups. Conclusion: The CM derived from human BM-MSCs has the capacity to rescue oxidatively damaged human TM cells associated with decreased autophagy and apoptosis. The BM-MSCs CM has potential for slowing down age- and disease-related degeneration of TM in patients with glaucoma, facilitating success in the control of IOP.
AB - Introduction: Glaucoma is a vision-threatening disease associated with accelerated aging of trabecular meshwork (TM) which results in elevated intraocular pressure (IOP). Increased oxidative stress in TM plays an important role in cellular molecular damage which leads to senescence. Autophagy is an intracellular lysosomal degradation process which is activated when cells are under stressful condition, and emerging studies have demonstrated increased expression of modulators of apoptosis and expression of autophagic cascade in ex-vivo TM specimens or cultured TM cells under oxidative stress. Recently, studies have shown neuroprotective and IOP-lowering effects after transplanting mesenchymal stem cells (MSCs) or injecting condition medium (CM) of MSCs into ocular hypertension animal models. However, knowledge of the underlying mechanism accounting for these effects is limited. Using condition medium (CM) from human bone marrow-derived mesenchymal stem cells (BM-MSCs), we investigated the effects of the CM derived from BM-MSCs on TM autophagy and apoptosis. Methods: H2O2 was added to culture medium of human TM cells to mimic oxidative damage in glaucomatous eyes, and the autophagic and anti-apoptotic effects of BM-MSCs-derived CM was explored on the oxidatively damaged cells. Mitochondrial ROS production was examined by MitoSOX™, apoptosis was evaluated using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) staining, and the expression of proteins involved in autophagy as well as extracellular matrix was investigated via Western blot. Results: There were no significant differences in TM cell viability when the cells were treated with different concentrations of CM in the absence of oxidative stress. Cell viability was significantly higher in oxidatively damaged TM cells treated with 1X or 5X CM compared to untreated TM cells under oxidative stress. The mitochondrial ROS level significantly increased with oxidative stress, which was mitigated in the CM treatment groups. DNA fragmentation significantly decreased in oxidatively stressed TM cells after treatment with CM. LCB3 II/LCB3 I was significantly elevated in the oxidative stress group compared to the control group and was significantly decreased in the CM treatment groups. Expression of fibronectin was not significantly different among the groups. Conclusion: The CM derived from human BM-MSCs has the capacity to rescue oxidatively damaged human TM cells associated with decreased autophagy and apoptosis. The BM-MSCs CM has potential for slowing down age- and disease-related degeneration of TM in patients with glaucoma, facilitating success in the control of IOP.
KW - Apoptosis
KW - Autophagy
KW - Mesenchymal stem cell
KW - Trabecular meshwork cell
UR - http://www.scopus.com/inward/record.url?scp=85144807086&partnerID=8YFLogxK
U2 - 10.1016/j.reth.2022.12.002
DO - 10.1016/j.reth.2022.12.002
M3 - Article
AN - SCOPUS:85144807086
SN - 2352-3204
VL - 22
SP - 50
EP - 58
JO - Regenerative Therapy
JF - Regenerative Therapy
ER -