Anomalous electrical performance of nanoscaled interfacial oxides for bonded n-GaAs wafers

Hao Ouyang*, Yew-Chuhg Wu, Hsiao Hao Chiou, Chia Cheng Liu, Ji Hao Cheng, Wen Ouyang, Shan Haw Chiou, Sham Tsong Shiue, Y. L. Chueh, L. J. Chou

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Electrical performance was found to be closely related to the variation of nanosized interface morphology in previous studies. This work investigated in detail the microstructural development of in- and anti-phase bonded interfaces for n-type (100) GaAs wafers treated at 500, 600, 700 and 850°C. The interfacial energy of anti-phase bonding is higher than that of in-phase bonding based on the first-principles calculations. The higher interface energy tends to stabilize the interfacial oxide layer. The continuous interfacial oxide layer observed below 700°C can deteriorate the electrical property due to its insulating property. However, the existence of nanoscaled oxide at anti-phase bonded interfaces can improve the electrical conductivity at 700°C. This is due to the suppression of the evaporation of As atom by the interfacial nanoscaled oxides based on the analysis of autocorrelation function and energy dispersive x-ray spectroscopy.

Original languageEnglish
Article number112112
JournalApplied Physics Letters
Issue number11
StatePublished - 30 Mar 2006


Dive into the research topics of 'Anomalous electrical performance of nanoscaled interfacial oxides for bonded n-GaAs wafers'. Together they form a unique fingerprint.

Cite this