TY - JOUR
T1 - Angular-Shaped 4,9-Dialkyl α- And β-Naphthodithiophene-Based Donor-Acceptor Copolymers
T2 - Investigation of Isomeric Structural Effects on Molecular Properties and Performance of Field-Effect Transistors and Photovoltaics
AU - Cheng, Sheng Wen
AU - Chiou, De Yang
AU - Tsai, Che En
AU - Liang, Wei Wei
AU - Lai, Yu Ying
AU - Hsu, Jhih Yang
AU - Hsu, Chain-Shu
AU - Osaka, Itaru
AU - Takimiya, Kazuo
AU - Cheng, Yen-Ju
N1 - Publisher Copyright:
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PY - 2015/10/1
Y1 - 2015/10/1
N2 - Two angular-shaped 4,9-didodecyl α-aNDT and 4,9-didodecyl β-aNDT isomeric structures have been regiospecifically designed and synthesized. The distannylated α-aNDT and β-aNDT monomers are copolymerized with the Br-DTNT monomer by the Stille coupling to furnish two isomeric copolymers, PαNDTDTNT and PβNDTDTNT, respectively. The geometric shape and coplanarity of the isomeric α-aNDT and β-aNDT segments in the polymers play a decisive role in determining their macroscopic device performance. Theoretical calculations show that PαNDTDTNT possesses more linear polymeric backbone and higher coplanarity than PβNDTDTNT. The less curved conjugated main chain facilitates stronger intermolecular π-π interactions, resulting in more redshifted absorption spectra of PαNDTDTNT in both solution and thin film compared to the PβNDTDTNT counterpart. 2D wide-angle X-ray diffraction analysis reveals that PαNDTDTNT has more ordered π-stacking and lamellar stacking than PβNDTDTNT as a result of the lesser curvature of the PαNDTDTNT backbone. Consistently, PαNDTDTNT exhibits a greater field effect transistor hole mobility of 0.214 cm2 V-1 s-1 than PβNDTDTNT with a mobility of 0.038 cm2 V-1 s-1. More significantly, the solar cell device incorporating the PαNDTDTNT:PC71BM blend delivers a superior power conversion efficiency (PCE) of 8.01% that outperforms the PβNDTDTNT:PC71BM-based device with a moderate PCE of 3.6%. Two new 4,9-dialkyl α- and β-naphthodithiophene-based D-A copolymers, PαNDTDTNT and PβNDTDTNT, are presented. With the better ordered structures in the solid state, PαNDTDTNT exhibits a greater field-effect transistor hole mobility of 0.214 cm2 V-1 s-1 and a superior solar cell efficiency of 8.01% than PβNDTDTNT with a mobility of 0.038 cm2 V-1 s-1 and a PCE of 3.6%.
AB - Two angular-shaped 4,9-didodecyl α-aNDT and 4,9-didodecyl β-aNDT isomeric structures have been regiospecifically designed and synthesized. The distannylated α-aNDT and β-aNDT monomers are copolymerized with the Br-DTNT monomer by the Stille coupling to furnish two isomeric copolymers, PαNDTDTNT and PβNDTDTNT, respectively. The geometric shape and coplanarity of the isomeric α-aNDT and β-aNDT segments in the polymers play a decisive role in determining their macroscopic device performance. Theoretical calculations show that PαNDTDTNT possesses more linear polymeric backbone and higher coplanarity than PβNDTDTNT. The less curved conjugated main chain facilitates stronger intermolecular π-π interactions, resulting in more redshifted absorption spectra of PαNDTDTNT in both solution and thin film compared to the PβNDTDTNT counterpart. 2D wide-angle X-ray diffraction analysis reveals that PαNDTDTNT has more ordered π-stacking and lamellar stacking than PβNDTDTNT as a result of the lesser curvature of the PαNDTDTNT backbone. Consistently, PαNDTDTNT exhibits a greater field effect transistor hole mobility of 0.214 cm2 V-1 s-1 than PβNDTDTNT with a mobility of 0.038 cm2 V-1 s-1. More significantly, the solar cell device incorporating the PαNDTDTNT:PC71BM blend delivers a superior power conversion efficiency (PCE) of 8.01% that outperforms the PβNDTDTNT:PC71BM-based device with a moderate PCE of 3.6%. Two new 4,9-dialkyl α- and β-naphthodithiophene-based D-A copolymers, PαNDTDTNT and PβNDTDTNT, are presented. With the better ordered structures in the solid state, PαNDTDTNT exhibits a greater field-effect transistor hole mobility of 0.214 cm2 V-1 s-1 and a superior solar cell efficiency of 8.01% than PβNDTDTNT with a mobility of 0.038 cm2 V-1 s-1 and a PCE of 3.6%.
KW - donor-acceptor copolymers
KW - linear polymer backbones
KW - naphthodithiophenes
KW - organic field-effect transistors
KW - organic photovoltaics
UR - http://www.scopus.com/inward/record.url?scp=84943581508&partnerID=8YFLogxK
U2 - 10.1002/adfm.201502338
DO - 10.1002/adfm.201502338
M3 - Article
AN - SCOPUS:84943581508
SN - 1616-301X
VL - 25
SP - 6131
EP - 6143
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 38
ER -