Abstract
This paper introduces an end-to-end learned image compression system, termed ANFIC, based on Augmented Normalizing Flows (ANF). ANF is a new type of flow model, which stacks multiple variational autoencoders (VAE) for greater model expressiveness. The VAE-based image compression has gone mainstream, showing promising compression performance. Our work presents the first attempt to leverage VAE-based compression in a flow-based framework. ANFIC advances further compression efficiency by stacking and extending hierarchically multiple VAE’s. The invertibility of ANF, together with our training strategies, enables ANFIC to support a wide range of quality levels without changing the encoding and decoding networks. Extensive experimental results show that in terms of PSNR-RGB, ANFIC performs comparably to or better than the state-of-the-art learned image compression. Moreover, it performs close to VVC intra coding, from low-rate compression up to perceptually lossless compression. In particular, ANFIC achieves the state-of-the-art performance, when extended with conditional convolution for variable rate compression with a single model. The source code of ANFIC can be found at https://github.com/dororojames/ANFIC .
Original language | American English |
---|---|
Pages (from-to) | 613 - 626 |
Journal | IEEE Open Journal of Circuits and Systems |
Volume | 2 |
Issue number | 2644-1225 |
DOIs | |
State | Published - Nov 2021 |
Keywords
- Learning-based image compression
- , flow-based image compression
- augmented normalizing flows
- , perceptually lossless image compression,
- variable rate image compression