TY - JOUR
T1 - An optimal parameterized Newton-type structure-preserving doubling algorithm for impact angle guidance-based 3D pursuer/target interception engagement
AU - Huang, Tsung Ming
AU - Kuo, Yueh Cheng
AU - Lin, Wen-Wei
AU - Wu, Chin Tien
N1 - Publisher Copyright:
© 2024 Elsevier Masson SAS
PY - 2024/12
Y1 - 2024/12
N2 - The proposed strategy, finite-time state-dependent Riccati equation (FT-SDRE)-based impact angle guidance, is generally employed to solve the 3D pursuer/target interception model with fixed lateral accelerations. This article expands its application to a general scenario where the lateral acceleration of a target may change. To achieve this, we approximate the accelerations of the azimuth and elevation angles of the target in the inertial frame via second-order finite difference schemes and develop a high-performance FT-SDRE algorithm with structure-preserving doubling algorithms (SDAs). As a result, the update frequency of the controller can be increased, and better guidance of the pursuer can be obtained to address the high maneuverability of the target during the entire interception procedure. At every state of the FT-SDRE, a modified Newton–Lyapunov method is employed to solve the continuous algebraic Riccati equation (CARE), and a new simplified SDA with adaptive optimal parameter selection is proposed for solving the associated Lyapunov equation. Our numerical results demonstrate that the FT-SDRE algorithm accelerated by our proposed methods is approximately three times faster than the FT-SDRE algorithm, in which the MATLAB functions icare and lyap are used to solve the CARE and the Lyapunov equation, respectively, throughout the entire interception procedure. In other words, the control frequency can be increased threefold. In our benchmark cases where the target maneuvers with nonlinear lateral acceleration, the target can be intercepted earlier via the proposed FT-SDRE algorithm.
AB - The proposed strategy, finite-time state-dependent Riccati equation (FT-SDRE)-based impact angle guidance, is generally employed to solve the 3D pursuer/target interception model with fixed lateral accelerations. This article expands its application to a general scenario where the lateral acceleration of a target may change. To achieve this, we approximate the accelerations of the azimuth and elevation angles of the target in the inertial frame via second-order finite difference schemes and develop a high-performance FT-SDRE algorithm with structure-preserving doubling algorithms (SDAs). As a result, the update frequency of the controller can be increased, and better guidance of the pursuer can be obtained to address the high maneuverability of the target during the entire interception procedure. At every state of the FT-SDRE, a modified Newton–Lyapunov method is employed to solve the continuous algebraic Riccati equation (CARE), and a new simplified SDA with adaptive optimal parameter selection is proposed for solving the associated Lyapunov equation. Our numerical results demonstrate that the FT-SDRE algorithm accelerated by our proposed methods is approximately three times faster than the FT-SDRE algorithm, in which the MATLAB functions icare and lyap are used to solve the CARE and the Lyapunov equation, respectively, throughout the entire interception procedure. In other words, the control frequency can be increased threefold. In our benchmark cases where the target maneuvers with nonlinear lateral acceleration, the target can be intercepted earlier via the proposed FT-SDRE algorithm.
UR - http://www.scopus.com/inward/record.url?scp=85206948180&partnerID=8YFLogxK
U2 - 10.1016/j.ast.2024.109674
DO - 10.1016/j.ast.2024.109674
M3 - Article
AN - SCOPUS:85206948180
SN - 1270-9638
VL - 155
JO - Aerospace Science and Technology
JF - Aerospace Science and Technology
M1 - 109674
ER -