An MIL-Derived Transformer for Weakly Supervised Point Cloud Segmentation

Cheng Kun Yang, Ji Jia Wu, Kai Syun Chen, Yung Yu Chuang, Yen Yu Lin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

28 Scopus citations

Abstract

We address weakly supervised point cloud segmentation by proposing a new model, MIL-derived transformer, to mine additional supervisory signals. First, the transformer model is derived based on multiple instance learning (MIL) to explore pair-wise cloud-level supervision, where two clouds of the same category yield a positive bag while two of different classes produce a negative bag. It leverages not only individual cloud annotations but also pair-wise cloud semantics for model optimization. Second, Adaptive global weighted pooling (AdaGWP) is integrated into our transformer model to replace max pooling and average pooling. It introduces learnable weights to re-scale logits in the class activation maps. It is more robust to noise while discovering more complete foreground points under weak supervision. Third, we perform point subsampling and enforce feature equivariance between the original and subsampled point clouds for regularization. The proposed method is end-to-end trainable and is general because it can work with different backbones with diverse types of weak supervision signals, including sparsely annotated points and cloud-level labels. The experiments show that it achieves state-of-the-art performance on the S3DIS and ScanNet benchmarks. The source code will be available at https://github.com/jimmy15923/wspss_mil_transformer.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages11820-11829
Number of pages10
ISBN (Electronic)9781665469463
DOIs
StatePublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: 19 Jun 202224 Jun 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period19/06/2224/06/22

Keywords

  • Efficient learning and inferences
  • Segmentation
  • grouping and shape analysis

Fingerprint

Dive into the research topics of 'An MIL-Derived Transformer for Weakly Supervised Point Cloud Segmentation'. Together they form a unique fingerprint.

Cite this