TY - JOUR
T1 - An innovative successive approximation register analog-to-digital converter for a nine-axis sensing system
AU - Lin, Chih Hsuan
AU - Wen, Kuei Ann
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/3
Y1 - 2021/3
N2 - With nine-axis sensing systems in 5G smartphones, mobile power consumption has become increasingly important, and ultra-low-power (ULP) sensor circuits can decrease power consumption to tens of microwatts. This paper presents an innovative successive approximation register analog-to-digital converter, which comprises fine (three most significant bits (MSBs) plus course conversion (11 least significant bits (LSBs)) capacitive digital-to-analog converters (CDACs), ULP, four-mode reconfigurable resolution (9, 10, 11, or 12 bits), an internally generated clock, meta-detection, the switching base midpoint voltage (Vm) (SW-B-M), bit control logic, multi-phase control logic, fine (three MSBs) plus course conversion (11 LSBs) switch control logic, phase control logic, and an input signal plus negative voltage (VI + NEG) voltage generator. Then, the mechanism of the discrete Fourier transform (DFT)-based calibration is applied. The scalable voltage technique was used, and the analog/digital voltage was Vanalog (1.5 V) and Vdigital (0.9 V) to meet the specifications of the nine-axis ULP sensing system. The CDACs can reconfigure four-mode resolutions, 9–12 bits, for use in nine-axis sensor applications. The corresponding dynamic signal-to-noise and distortion ratio performance was 50.78, 58.53, 62.42, and 66.51 dB. In the 12-bit mode, the power consumption of the ADC was approximately 2.7 µW, and the corresponding figure of merit (FoM) was approximately 30.5 fJ for each conversion step.
AB - With nine-axis sensing systems in 5G smartphones, mobile power consumption has become increasingly important, and ultra-low-power (ULP) sensor circuits can decrease power consumption to tens of microwatts. This paper presents an innovative successive approximation register analog-to-digital converter, which comprises fine (three most significant bits (MSBs) plus course conversion (11 least significant bits (LSBs)) capacitive digital-to-analog converters (CDACs), ULP, four-mode reconfigurable resolution (9, 10, 11, or 12 bits), an internally generated clock, meta-detection, the switching base midpoint voltage (Vm) (SW-B-M), bit control logic, multi-phase control logic, fine (three MSBs) plus course conversion (11 LSBs) switch control logic, phase control logic, and an input signal plus negative voltage (VI + NEG) voltage generator. Then, the mechanism of the discrete Fourier transform (DFT)-based calibration is applied. The scalable voltage technique was used, and the analog/digital voltage was Vanalog (1.5 V) and Vdigital (0.9 V) to meet the specifications of the nine-axis ULP sensing system. The CDACs can reconfigure four-mode resolutions, 9–12 bits, for use in nine-axis sensor applications. The corresponding dynamic signal-to-noise and distortion ratio performance was 50.78, 58.53, 62.42, and 66.51 dB. In the 12-bit mode, the power consumption of the ADC was approximately 2.7 µW, and the corresponding figure of merit (FoM) was approximately 30.5 fJ for each conversion step.
KW - DFT-based
KW - Fine (3 MSBs) plus course conversion (11 LSBs) CDAC
KW - Reconfigurable
KW - SAR-ADC
UR - http://www.scopus.com/inward/record.url?scp=85099475066&partnerID=8YFLogxK
U2 - 10.3390/jlpea11010003
DO - 10.3390/jlpea11010003
M3 - Article
AN - SCOPUS:85099475066
SN - 2079-9268
VL - 11
SP - 1
EP - 24
JO - Journal of Low Power Electronics and Applications
JF - Journal of Low Power Electronics and Applications
IS - 1
M1 - 3
ER -